16 research outputs found

    Absence of Spontaneous Peroxisome Proliferation in Enoyl-CoA Hydratase/l-3-Hydroxyacyl-CoA Dehydrogenase-deficient Mouse Liver: FURTHER SUPPORT FOR THE ROLE OF FATTY ACYL CoA OXIDASE IN PPARα LIGAND METABOLISM

    Get PDF
    Peroxisomes contain a classical L-hydroxy-specific peroxisome proliferator-inducible beta-oxidation system and also a second noninducible D-hydroxy-specific beta-oxidation system. We previously generated mice lacking fatty acyl-CoA oxidase (AOX), the first enzyme of the L-hydroxy-specific classical beta-oxidation system; these AOX-/- mice exhibited sustained activation of peroxisome proliferator-activated receptor alpha (PPARalpha), resulting in profound spontaneous peroxisome proliferation in liver cells. These observations implied that AOX is responsible for the metabolic degradation of PPARalpha ligands. In this study, the function of enoyl-CoA hydratase/L-3-hydroxyacyl-CoA dehydrogenase (L-PBE), the second enzyme of this peroxisomal beta-oxidation system, was investigated by disrupting its gene. Mutant mice (L-PBE-/-) were viable and fertile and exhibited no detectable gross phenotypic defects. L-PBE-/- mice showed no hepatic steatosis and manifested no spontaneous peroxisome proliferation, unlike that encountered in livers of mice deficient in AOX. These results indicate that disruption of classical peroxisomal fatty acid beta-oxidation system distal to AOX step does not interfere with the inactivation of endogenous ligands of PPARalpha, further confirming that the AOX gene is indispensable for the physiological regulation of this receptor. The absence of appreciable changes in lipid metabolism also indicates that enoyl-CoAs, generated in the classical system in L-PBE-/- mice are diverted to D-hydroxy-specific system for metabolism by D-PBE. When challenged with a peroxisome proliferator, L-PBE-/- mice showed increases in the levels of hepatic mRNAs and proteins that are regulated by PPARalpha except for appreciable blunting of peroxisome proliferative response as compared with that observed in hepatocytes of wild type mice similarly treated. This blunting of peroxisome proliferative response is attributed to the absence of L-PBE protein in L-PBE-/- mouse liver, because all other proteins are induced essentially to the same extent in both wild type and L-PBE-/- mice

    Mouse steroid receptor coactivator-1 is not essential for peroxisome proliferator-activated receptor α-regulated gene expression

    Get PDF
    Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors, and it is assumed that the biological effects of these receptors depend on interactions with recently identified coactivators, including steroid receptor coactivator-1 (SRC-1). We assessed the in vivo function of SRC-1 on the PPARα-regulated gene expression in liver by generating mice in which the SRC-1 gene was inactivated by gene targeting. The homozygous (SRC-1(−/−)) mice were viable and fertile and exhibited no detectable gross phenotypic defects. When challenged with a PPARα ligand, such as ciprofibrate or Wy-14,643, the SRC-1(−/−) mice displayed typical pleiotropic responses, including hepatomegaly, peroxisome proliferation in hepatocytes, and increased mRNA and protein levels of genes that are regulated by PPARα. These alterations were indistinguishable from those exhibited by SRC-1(+/+) wild-type mice fed either ciprofibrate- or Wy-14,643-containing diets. These results indicate that SRC-1 is not essential for PPARα-mediated transcriptional activation in vivo and suggest redundancy in nuclear receptor coactivators

    The Sphingosine Kinase 1 Inhibitor, PF543, Mitigates Pulmonary Fibrosis by Reducing Lung Epithelial Cell mtDNA Damage and Recruitment of Fibrogenic Monocytes

    No full text
    Idiopathic pulmonary fibrosis (IPF) is a chronic disease for which novel approaches are urgently required. We reported increased sphingosine kinase 1 (SPHK1) in IPF lungs and that SPHK1 inhibition using genetic and pharmacologic approaches reduces murine bleomycin-induced pulmonary fibrosis. We determined whether PF543, a specific SPHK1 inhibitor post bleomycin or asbestos challenge mitigates lung fibrosis by reducing mitochondrial (mt) DNA damage and pro-fibrotic monocyte recruitment—both are implicated in the pathobiology of pulmonary fibrosis. Bleomycin (1.5 U/kg), crocidolite asbestos (100 µg/50 µL) or controls was intratracheally instilled in Wild-Type (C57Bl6) mice. PF543 (1 mg/kg) or vehicle was intraperitoneally injected once every two days from day 7−21 following bleomycin and day 14−21 or day 30−60 following asbestos. PF543 reduced bleomycin- and asbestos-induced pulmonary fibrosis at both time points as well as lung expression of profibrotic markers, lung mtDNA damage, and fibrogenic monocyte recruitment. In contrast to human lung fibroblasts, asbestos augmented lung epithelial cell (MLE) mtDNA damage and PF543 was protective. Post-exposure PF543 mitigates pulmonary fibrosis in part by reducing lung epithelial cell mtDNA damage and monocyte recruitment. We reason that SPHK1 signaling may be an innovative therapeutic target for managing patients with IPF and other forms of lung fibrosis
    corecore