1 research outputs found
Automatic linear measurements of the fetal brain on MRI with deep neural networks
Timely, accurate and reliable assessment of fetal brain development is
essential to reduce short and long-term risks to fetus and mother. Fetal MRI is
increasingly used for fetal brain assessment. Three key biometric linear
measurements important for fetal brain evaluation are Cerebral Biparietal
Diameter (CBD), Bone Biparietal Diameter (BBD), and Trans-Cerebellum Diameter
(TCD), obtained manually by expert radiologists on reference slices, which is
time consuming and prone to human error. The aim of this study was to develop a
fully automatic method computing the CBD, BBD and TCD measurements from fetal
brain MRI. The input is fetal brain MRI volumes which may include the fetal
body and the mother's abdomen. The outputs are the measurement values and
reference slices on which the measurements were computed. The method, which
follows the manual measurements principle, consists of five stages: 1)
computation of a Region Of Interest that includes the fetal brain with an
anisotropic 3D U-Net classifier; 2) reference slice selection with a
Convolutional Neural Network; 3) slice-wise fetal brain structures segmentation
with a multiclass U-Net classifier; 4) computation of the fetal brain
midsagittal line and fetal brain orientation, and; 5) computation of the
measurements. Experimental results on 214 volumes for CBD, BBD and TCD
measurements yielded a mean difference of 1.55mm, 1.45mm and 1.23mm
respectively, and a Bland-Altman 95% confidence interval () of 3.92mm,
3.98mm and 2.25mm respectively. These results are similar to the manual
inter-observer variability. The proposed automatic method for computing
biometric linear measurements of the fetal brain from MR imaging achieves human
level performance. It has the potential of being a useful method for the
assessment of fetal brain biometry in normal and pathological cases, and of
improving routine clinical practice.Comment: 15 pages, 8 figures, presented in CARS 2020, submitted to IJCAR