17,247 research outputs found
A theoretical and experimental study of the ionosphere using radio signals from earth satellites progress report no. 9, 1 jan. - 30 jun. 1964
Morphology of ionosphere using radio signals from earth satellite
Optical surface waves in periodic layered medium grown by liquid phase epitaxy
Optical surface waves propagating along the surface of a multilayer stack have been observed. The multilayer stack is grown by liquid phase epitaxy. The transverse intensity distribution measured is found to agree with our theoretical calculation
Analysis of information systems for hydropower operations
The operations of hydropower systems were analyzed with emphasis on water resource management, to determine how aerospace derived information system technologies can increase energy output. Better utilization of water resources was sought through improved reservoir inflow forecasting based on use of hydrometeorologic information systems with new or improved sensors, satellite data relay systems, and use of advanced scheduling techniques for water release. Specific mechanisms for increased energy output were determined, principally the use of more timely and accurate short term (0-7 days) inflow information to reduce spillage caused by unanticipated dynamic high inflow events. The hydrometeorologic models used in predicting inflows were examined to determine the sensitivity of inflow prediction accuracy to the many variables employed in the models, and the results used to establish information system requirements. Sensor and data handling system capabilities were reviewed and compared to the requirements, and an improved information system concept outlined
Recommended from our members
Length summation in noise
To investigate the effect of background noise on visual summation, we measured the contrast detection thresholds for targets with or without a white noise mask in luminance contrast. The targets were Gabor patterns placed at 3° eccentricity to either the left or right of the fixation and elongated along an arc of the same radius to ensure equidistance from fixation for every point along the long axis. The task was a spatial two-alternative forced-choice (2AFC) paradigm in which the observer had to indicate whether the target was on the left or the right of the fixation. The threshold was measured at 75% accuracy with a staircase procedure. The detection threshold decreased with target length with slope −1/2 on log-log coordinates for target lengths between 30′ and 300′ half-height full-width (HHFW), defining a range of ideal matched-filter summation extending up to about 200′ (or about 16× the center width of the Gabor targets). The summation curves for different noise contrasts were shifted copies of each other. For the threshold versus mask contrast (TvN) functions, the target threshold was constant for noise levels up to about −22 dB, then increased with noise contrast to a linear asymptote on log-log coordinates. Since the “elbow” of the target threshold versus noise function is an index of the level of the equivalent noise experienced by the visual system during target detection, our results suggest that the signal-to-noise ratio was invariant with target length. We further show that a linear-nonlinear-linear gain-control model can fully account for these results with far fewer parameters than a matched-filter model
Scattering of Pruppacher-Pitter raindrops at 30 GHz
Optimum design of modern ground-satellite communication systems requires the knowledge of rain-induced differential attenuation, differential phase shift, and cross polarization factors. Different available analytical techniques for raindrop scattering problems were assessed. These include: (1) geometrical theory of diffraction; (2) method of moment; (3) perturbation method; (4) point matching methods; (5) extended boundary condition method; and (6) global-local finite element method. The advantages and disadvantages of each are listed. The extended boundary condition method, which was determined to yield the most scattering results, is summarized. The scattered fields for Pruppacher-Pitter raindrops with sizes ranging from 0.5 mm to 3.5 mm at 20 C and at 30 GHz for several incidence angles are tabulated
Silicon nitride-aluminum oxide solid solution (SiAION) formation and densification by pressure sintering
Stirred-ball-mill-blended Si3N4 and Al2O3 powders were pressure sintered in order to investigate the mechanism of solid solution formation and densification in the Si3N4-Al2O3 system. Powder blends with Si3N4:Al2O3 mole ratios of 4:1, 3:2, and 2:3 were pressure sintered at 27.6-MN/sq m pressure at temperatures to 17000 C (3090 F). The compaction behavior of the powder blends during pressure sintering was determined by observing the density of the powder compact as a function of temperature and time starting from room temperature. This information, combined with the results of X-ray diffraction and metallographic analyses regarding solutioning and phase transformation phenomena in the Si3N4-Al2O3 system, was used to describe the densification behavior
- …