89,458 research outputs found
KL-Divergence Guided Two-Beam Viterbi Algorithm on Factorial HMMs
This thesis addresses the problem of the high computation complexity issue that arises when decoding hidden Markov models (HMMs) with a large number of states. A novel approach, the two-beam Viterbi, with an extra forward beam, for decoding HMMs is implemented on a system that uses factorial HMM to simultaneously recognize a pair of isolated digits on one audio channel. The two-beam Viterbi algorithm uses KL-divergence and hierarchical clustering to reduce the overall decoding complexity. This novel approach achieves 60% less computation compared to the baseline algorithm, the Viterbi beam search, while maintaining 82.5% recognition accuracy.Ope
Decoherence of multimode thermal squeezed coherent states
It is well known that any multimode positive definite quadratic Hamiltonian can be transformed into a Hamiltonian of uncoupled harmonic oscillators. Based on this theorem, the multimode thermal squeezed coherent states are constructed in terms of density operators. Decoherence of multimode thermal squeezed coherent states is investigated via the characteristic function and it is shown that the decohered (reduced) states are still thermal squeezed coherent states in general
The disjunctivities of ω-languages
An ω-language over a finite alphabet X is a set of infinite sequences of letters of X. Consider congruences IL
and Pω, L on X* and a congruence OL on Xω introduced by an ω-language L. IL, Pω, L, and OL are called the
infinitary syntactic-congruence, the principal congruence and the ω-syntactic congruence of L, respectively. If
IL (Pω, L, OL) is the equality then L is called an I-disjunctive (P-disjunctive, O-disjunctive, respectively) ω-
language. Properties concerning such ω-languages are explored and relations between these ω-languages are
also studied
- …