2 research outputs found

    Foundation Optimization and Design for Replacement of the Woodrow Wilson Bridge

    Get PDF
    The new Woodrow Wilson Bridge (WWB) will replace the existing bridge over the Potomac River to connect Alexandria, Virginia to Prince Georges County, Maryland. The new WWB will extend approximately 1.1 miles across the river, with a 367-ft long bascule span in the main river channel where the water depth is about 36 ft. The subsurface soil profile consists of up to 50 ft of a soft organic silty clay layer that is very vulnerable to scour, underlain by a deep deposit of hard sandy clay. This paper will present results from a Pile Demonstration Program (PDP) that was conducted as part of the bridge replacement project, discuss the various aspects of the seismic design and analysis, and describe how those data were applied to optimize foundation design. The PDP included dynamic monitoring, static load tests and Statnamic load tests at several locations, to evaluate: (i) the pile driveability and associated parameters necessary for dynamic analysis; and (ii) the ultimate skin friction and end bearing values for design. The PDP provided a basis for eliminating static load tests during construction and construction quality control, and for evaluating potential settlement of the existing bridge. Although the seismicity of the region is low, considering the importance of this bridge and the consequences of potential damage during an earthquake, seismic issues were addressed thoroughly in the design of the new structure, including: (i) development of design spectra based on site-specific seismic hazard and ground motion analyses; (ii) implications of the complex soil profile and potential scour on the dynamic response of the foundations; (iii) Soil-Structure Interaction (SSI) analyses for the various foundation alternatives; and (iv) evaluation of the significance of the kinematic SSI effect on the piles. The presented case study proves how results of a pile demonstration program and extensive seismic studies can enable significant optimization of the foundation design and cost savings, and provide significant quality control during construction

    Electric Conductivity Probes to Study Change in Degree of Saturation - Bench Top Laboratory Tests

    No full text
    Sand characteristics such as liquefaction susceptibility can be affected as a result of change in degree of saturation of sand. New liquefaction mitigation technique by inducing partial saturation in sands is introduced by Yegian et al in 2007[1]. This technique requires to monitor changes in degree of saturation of sand. By nature, changes in degree of saturation of sand can lead in changes in its electric conductivity. Electric conductivity is the property of a material that represents its ability to conduct electric current. Fully saturated sand can conduct electric current better than sand with lower degree of saturation. Therefore, the change in measured electric conductivity can be used to calculate the change in degree of saturation of sand. In 1942, Gus Archie [2] expressed that the electric conductivity of soil is a function of its porosity, degree of saturation, tortuosity and electric conductivity of pore fluid. Using Archie’s law electrical conductivity can be related to the degree of saturation in sands. Typically, electric conductivity probes and meters are instruments which are used to measure electric conductivity. Using electrical conductivity probes, sets of bench top tests were conducted on Ottawa sand to study the relation between degree of saturation and electric conductivity in sand. Partial saturation in sands were created by pouring dry sand into sodium percarbonate solution with a known initial concentration. By nature, sodium percarbonate in water, generates oxygen gas bubbles in time. The changes in electric conductivity in the specimen were measured using electric conductivity meters and probes. In addition, changes in degree of saturation of the specimen were measured using soil phase relations equations. Measured electric conductivity data and calculated degree of saturations were correlated to explore relation between electric conductivity and degree of saturation. This paper presents results of bench top tests, and suggests a relationship between, final degree of saturation of sand and initial concentration of sodium percarbonate solutio
    corecore