4,835 research outputs found
Motivational factors of Australian mobile gamers
Mobile games are a fast growing industry, overtaking all other video game platforms with year on year increases in revenue. Many studies have been conducted to explore the motivations of why video games players play their selected games. However very little research has focused on mobile gamers. In addition, Australian studies on the topic are sparse. This paper aimed to discover what motivates a mobile gamer from the perspective of the initial motivational factors attracting them to a mobile game, and the motivational factors that provide interest to continue playing and thereby increase game longevity. A survey was conducted online for Australian participants, which attracted 123 respondents. The survey was formulated by focusing on the 12 key subcomponents as motivational factors of the Gamer Motivational Profile v2 model devised by Quantic Foundry. It was discovered that mobile gamers are a completely different breed of gamer in contrast to the general video gamer. Strategy and challenge which are subcomponents of mastery proved popular among all mobile gamers, while destruction and excitement, subcomponents of action, were often the least motivating factors of all. With the newly discovered data, perhaps mobile game developers can pursue the correct avenues of game design when catering to their target audience
A numerical study of a class of TVD schemes for compressible mixing layers
At high Mach numbers the two-dimensional time-developing mixing layer develops shock waves, positioned around large-scale vortical structures. A suitable numerical method has to be able to capture the inherent instability of the flow, leading to the roll-up of vortices, and also must be able to capture shock waves when they develop. Standard schemes for low speed turbulent flows, for example spectral methods, rely on resolution of all flow-features and cannot handle shock waves, which become too thin at any realistic Reynolds number. The performance of a class of second-order explicit total variation diminishing (TVD) schemes on a compressible mixing layer problem was studied. The basic idea is to capture the physics of the flow correctly, by resolving down to the smallest turbulent length scales, without resorting to turbulence or sub-grid scale modeling, and at the same time capture shock waves without spurious oscillations. The present study indicates that TVD schemes can capture the shocks accurately when they form, but (without resorting to a finer grid) have poor accuracy in computing the vortex growth. The solution accuracy depends on the choice of limiter. However a larger number of grid points are in general required to resolve the correct vortex growth. The low accuracy in computing time-dependent problems containing shock waves as well as vortical structures is partly due to the inherent shock-capturing property of all TVD schemes. In order to capture shock waves without spurious oscillations these schemes reduce to first-order near extrema and indirectly produce clipping phenomena, leading to inaccuracy in the computation of vortex growth. Accurate simulation of unsteady turbulent fluid flows with shock waves will require further development of efficient, uniformly higher than second-order accurate, shock-capturing methods
Analytic Approximations for Transit Light Curve Observables, Uncertainties, and Covariances
The light curve of an exoplanetary transit can be used to estimate the
planetary radius and other parameters of interest. Because accurate parameter
estimation is a non-analytic and computationally intensive problem, it is often
useful to have analytic approximations for the parameters as well as their
uncertainties and covariances. Here we give such formulas, for the case of an
exoplanet transiting a star with a uniform brightness distribution. We also
assess the advantages of some relatively uncorrelated parameter sets for
fitting actual data. When limb darkening is significant, our parameter sets are
still useful, although our analytic formulas underpredict the covariances and
uncertainties.Comment: 33 pages, 14 figure
Performance of Low Dissipative High Order Shock-Capturing Schemes for Shock-Turbulence Interactions
Accurate and efficient direct numerical simulation of turbulence in the presence of shock waves represents a significant challenge for numerical methods. The objective of this paper is to evaluate the performance of high order compact and non-compact central spatial differencing employing total variation diminishing (TVD) shock-capturing dissipations as characteristic based filters for two model problems combining shock wave and shear layer phenomena. A vortex pairing model evaluates the ability of the schemes to cope with shear layer instability and eddy shock waves, while a shock wave impingement on a spatially-evolving mixing layer model studies the accuracy of computation of vortices passing through a sequence of shock and expansion waves. A drastic increase in accuracy is observed if a suitable artificial compression formulation is applied to the TVD dissipations. With this modification to the filter step the fourth-order non-compact scheme shows improved results in comparison to second-order methods, while retaining the good shock resolution of the basic TVD scheme. For this characteristic based filter approach, however, the benefits of compact schemes or schemes with higher than fourth order are not sufficient to justify the higher complexity near the boundary and/or the additional computational cost
The Use of E-book to Improve Reading Comprehension Among Year 4 Pupils
This is an Action Research of using the Story Jumper as an E-book to improve the reading comprehension among Year 4 pupils in one of the primary schools in Malaysia. The participants involved were twenty pupils consisting of seven males and thirteen females. Three data collection methods employed were pre-test and post-test, pupils' work and teacher's reflective journal. The findings showed that the use of E-book had increased the level of understanding in reading comprehension among the research participants. The mean for the pre-test and post-test had increased from 45.83 to 93.33. The pupils' work indicated positive improvements in terms of their level of understanding and responses in reading. It was also found from the reflective journal that the research participants had participated actively in the learning process and their level of motivation was also increased. The implication is to use E-book in the teaching of reading skills among the primary school learners
α-pinene photooxidation under controlled chemical conditions – Part 2: SOA yield and composition in low- and high-NO_x environments
The gas-phase oxidation of α-pinene produces a large amount of secondary organic aerosol (SOA) in the atmosphere. A number of carboxylic acids, organosulfates and nitrooxy organosulfates associated with α-pinene have been found in field samples and some are used as tracers of α-pinene oxidation. α-pinene reacts readily with OH and O_3 in the atmosphere followed by reactions with both HO_2 and NO. Due to the large number of potential reaction pathways, it can be difficult to determine what conditions lead to SOA. To better understand the SOA yield and chemical composition from low- and high-NO_x OH oxidation of α-pinene, studies were conducted in the Caltech atmospheric chamber under controlled chemical conditions. Experiments used low O_3 concentrations to ensure that OH was the main oxidant and low α-pinene concentrations such that the peroxy radical (RO_2) reacted primarily with either HO_2 under low-NO_x conditions or NO under high-NO_x conditions. SOA yield was suppressed under conditions of high-NO_x. SOA yield under high-NO_x conditions was greater when ammonium sulfate/sulfuric acid seed particles (highly acidic) were present prior to the onset of growth than when ammonium sulfate seed particles (mildly acidic) were present; this dependence was not observed under low-NO_x conditions. When aerosol seed particles were introduced after OH oxidation, allowing for later generation species to be exposed to fresh inorganic seed particles, a number of low-NO_x products partitioned to the highly acidic aerosol. This indicates that the effect of seed acidity and SOA yield might be under-estimated in traditional experiments where aerosol seed particles are introduced prior to oxidation. We also identify the presence of a number of carboxylic acids that are used as tracer compounds of α-pinene oxidation in the field as well as the formation of organosulfates and nitrooxy organosulfates. A number of the carboxylic acids were observed under all conditions, however, pinic and pinonic acid were only observed under low-NO_x conditions. Evidence is provided for particle-phase sulfate esterification of multi-functional alcohols
Galaxy Clusters in the Line of Sight to Background Quasars: I. Survey Design and Incidence of MgII Absorbers at Cluster Redshifts
We describe the first optical survey of absorption systems associated with
galaxy clusters at z= 0.3-0.9. We have cross-correlated SDSS DR3 quasars with
high-redshift cluster/group candidates from the Red-Sequence Cluster Survey. We
have found 442 quasar-cluster pairs for which the MgII doublet might be
detected at a transverse (physical) distance d<2 Mpc from the cluster centers.
To investigate the incidence (dN/dz) and equivalent-width distribution n(W) of
MgII systems at cluster redshifts, two statistical samples were drawn out of
these pairs: one made of high-resolution spectroscopic quasar observations (46
pairs), and one made of quasars used in MgII searches found in the literature
(375 pairs). The results are: (1) the population of strong MgII systems
(W_0>2.0 Ang.) near cluster redshifts shows a significant (>3 sigma)
overabundance (up to a factor of 15) when compared with the 'field' population;
(2) the overabundance is more evident at smaller distances (d<1 Mpc) than
larger distances (d<2 Mpc) from the cluster center; and, (3) the population of
weak MgII systems (W_0<0.3 Ang.) near cluster redshifts conform to the field
statistics. Unlike in the field, this dichotomy makes n(W) in clusters appear
flat and well fitted by a power-law in the entire W-range. A sub-sample of the
most massive clusters yields a stronger and still significant signal. Since
either the absorber number density or filling-factor/cross-section affects the
absorber statistics, an interesting possibility is that we have detected the
signature of truncated halos due to environmental effects. Thus, we argue that
the excess of strong systems is due to a population of absorbers in an
overdense galaxy environment, and the lack of weak systems to a different
population, that got destroyed in the cluster environment. (Abridged)Comment: Accepted for publication in the Astrophysical Journa
Yields of oxidized volatile organic compounds during the OH radical initiated oxidation of isoprene, methyl vinyl ketone, and methacrolein under high-NO_x conditions
We present first-generation and total production yields of glyoxal, methylglyoxal, glycolaldehyde, and hydroxyacetone from the oxidation of isoprene, methyl vinyl ketone (MVK), and methacrolein (MACR) with OH under high NO_x conditions. Several of these first-generation yields are not included in commonly used chemical mechanisms, such as the Leeds Master Chemical Mechanism (MCM) v. 3.2. The first-generation yield of glyoxal from isoprene was determined to be 2.1 (±0.6)%. Inclusion of first-generation production of glyoxal, glycolaldehyde and hydroxyacetone from isoprene greatly improves performance of an MCM based model during the initial part of the experiments. In order to further improve performance of the MCM based model, higher generation glyoxal production was reduced by lowering the first-generation yield of glyoxal from C5 hydroxycarbonyls. The results suggest that glyoxal production from reaction of OH with isoprene under high NO_x conditions can be approximated by inclusion of a first-generation production term together with secondary production only via glycolaldehyde. Analogously, methylglyoxal production can be approximated by a first-generation production term from isoprene, and secondary production via MVK, MACR and hydroxyacetone. The first-generation yields reported here correspond to less than 5% of the total oxidized yield from isoprene and thus only have a small effect on the fate of isoprene. However, due to the abundance of isoprene, the combination of first-generation yields and reduced higher generation production of glyoxal from C5 hydroxycarbonyls is important for models that include the production of the small organic molecules from isoprene
Structure-based stabilization of insulin as a therapeutic protein assembly via enhanced aromatic-aromatic interactions
Key contributions to protein structure and stability are provided by weakly polar interactions, which arise from asymmetric electronic distributions within amino acids and peptide bonds. Of particular interest are aromatic side chains whose directional π-systems commonly stabilize protein interiors and interfaces. Here, we consider aromatic-aromatic interactions within a model protein assembly: the dimer interface of insulin. Semi-classical simulations of aromatic-aromatic interactions at this interface suggested that substitution of residue TyrB26 by Trp would preserve native structure while enhancing dimerization (and hence hexamer stability). The crystal structure of a [TrpB26]insulin analog (determined as a T3Rf3 zinc hexamer at a resolution of 2.25 Å) was observed to be essentially identical to that of WT insulin. Remarkably and yet in general accordance with theoretical expectations, spectroscopic studies demonstrated a 150-fold increase in the in vitro lifetime of the variant hexamer, a critical pharmacokinetic parameter influencing design of long-acting formulations. Functional studies in diabetic rats indeed revealed prolonged action following subcutaneous injection. The potency of the TrpB26-modified analog was equal to or greater than an unmodified control. Thus, exploiting a general quantum-chemical feature of protein structure and stability, our results exemplify a mechanism-based approach to the optimization of a therapeutic protein assembly
- …