3 research outputs found

    MOCF: A Multi-Objective Clustering Framework using an Improved Particle Swarm Optimization Algorithm

    Get PDF
    Traditional clustering algorithms, such as K-Means, perform clustering with a single goal in mind. However, in many real-world applications, multiple objective functions must be considered at the same time. Furthermore, traditional clustering algorithms have drawbacks such as centroid selection, local optimal, and convergence. Particle Swarm Optimization (PSO)-based clustering approaches were developed to address these shortcomings. Animals and their social Behaviour, particularly bird flocking and fish schooling, inspire PSO. This paper proposes the Multi-Objective Clustering Framework (MOCF), an improved PSO-based framework. As an algorithm, a Particle Swarm Optimization (PSO) based Multi-Objective Clustering (PSO-MOC) is proposed. It significantly improves clustering efficiency. The proposed framework's performance is evaluated using a variety of real-world datasets. To test the performance of the proposed algorithm, a prototype application was built using the Python data science platform. The empirical results showed that multi-objective clustering outperformed its single-objective counterparts

    Framework for Virtualized Network Functions (VNFs) in Cloud of Things Based on Network Traffic Services

    Get PDF
    The cloud of things (CoT), which combines the Internet of Things (IoT) and cloud computing, may offer Virtualized Network Functions (VNFs) for IoT devices on a dynamic basis based on service-specific requirements. Although the provisioning of VNFs in CoT is described as an online decision-making problem, most widely used techniques primarily focus on defining the environment using simple models in order to discover the optimum solution. This leads to inefficient and coarse-grained provisioning since the Quality of Service (QoS) requirements for different types of CoT services are not considered, and important historical experience on how to provide for the best long-term benefits is disregarded. This paper suggests a methodology for providing VNFs intelligently in order to schedule adaptive CoT resources in line with the detection of traffic from diverse network services. The system makes decisions based on Deep Reinforcement Learning (DRL) based models that take into account the complexity of network configurations and traffic changes. To obtain stable performance in this model, a special surrogate objective function and a policy gradient DRL method known as Policy Optimisation using Kronecker-Factored Trust Region (POKTR) are utilised. The assertion that our strategy improves CoT QoS through real-time VNF provisioning is supported by experimental results. The POKTR algorithm-based DRL-based model maximises throughput while minimising network congestion compared to earlier DRL algorithms

    A Hybrid Machine Learning Model to Recognize and Detect Plant Diseases in Early Stages

    Get PDF
    This paper presents an improved Inception module to recognise and detect plant illnesses substituting the original convolutions with architecture based on modified-Xception (m-Xception). In addition, ResNet extracts features by prioritising logarithm calculations over softmax calculations to get more consistent classification outcomes. The model’s training utilised a two-stage transfer learning process to produce an effective model. The results of the experiments reveal that the suggested approach is capable of achieving the specified level of performance, with an average recognition fineness of 99.73 on the public dataset and 98.05 on the domestic dataset, respectively
    corecore