7 research outputs found

    Approximating the Permanent with Fractional Belief Propagation

    Get PDF
    We discuss schemes for exact and approximate computations of permanents, and compare them with each other. Specifically, we analyze the belief propagation (BP) approach and its fractional belief propagation (FBP) generalization for computing the permanent of a non-negative matrix. Known bounds and Conjectures are verified in experiments, and some new theoretical relations, bounds and Conjectures are proposed. The fractional free energy (FFE) function is parameterized by a scalar parameter y ∈ [−1;1], where y = −1 corresponds to the BP limit and y = 1 corresponds to the exclusion principle (but ignoring perfect matching constraints) mean-field (MF) limit. FFE shows monotonicity and continuity with respect to g. For every non-negative matrix, we define its special value y∗ ∈ [−1;0] to be the g for which the minimum of the y-parameterized FFE function is equal to the permanent of the matrix, where the lower and upper bounds of the g-interval corresponds to respective bounds for the permanent. Our experimental analysis suggests that the distribution of y∗ varies for different ensembles but y∗ always lies within the [−1;−1/2] interval. Moreover, for all ensembles considered, the behavior of y∗ is highly distinctive, offering an empirical practical guidance for estimating permanents of non-negative matrices via the FFE approach.Los Alamos National Laboratory (Undergraduate Research Assistant Program)United States. National Nuclear Security Administration (Los Alamos National Laboratory Contract DE C52-06NA25396

    Computational Mirrors: Blind Inverse Light Transport by Deep Matrix Factorization

    Full text link
    We recover a video of the motion taking place in a hidden scene by observing changes in indirect illumination in a nearby uncalibrated visible region. We solve this problem by factoring the observed video into a matrix product between the unknown hidden scene video and an unknown light transport matrix. This task is extremely ill-posed, as any non-negative factorization will satisfy the data. Inspired by recent work on the Deep Image Prior, we parameterize the factor matrices using randomly initialized convolutional neural networks trained in a one-off manner, and show that this results in decompositions that reflect the true motion in the hidden scene.Comment: 14 pages, 5 figures, Advances in Neural Information Processing Systems 201

    Computational mirrors: Blind inverse light transport by deep matrix factorization

    No full text
    We recover a video of the motion taking place in a hidden scene by observing changes in indirect illumination in a nearby uncalibrated visible region. We solve this problem by factoring the observed video into a matrix product between the unknown hidden scene video and an unknown light transport matrix. This task is extremely ill-posed as any non-negative factorization will satisfy the data. Inspired by recent work on the Deep Image Prior, we parameterize the factor matrices using randomly initialized convolutional neural networks trained in a one-off manner, and show that this results in decompositions that reflect the true motion in the hidden scene.United States. Defense Advanced Research Projects Agency (Contract HR0011-16-C-0030)National Science Foundation (U.S.) (Grant CCF-1816209

    Inferring Light Fields from Shadows

    No full text
    © 2018 IEEE. We present a method for inferring a 4D light field of a hidden scene from 2D shadows cast by a known occluder on a diffuse wall. We do this by determining how light naturally reflected off surfaces in the hidden scene interacts with the occluder. By modeling the light transport as a linear system, and incorporating prior knowledge about light field structures, we can invert the system to recover the hidden scene. We demonstrate results of our inference method across simulations and experiments with different types of occluders. For instance, using the shadow cast by a real house plant, we are able to recover low resolution light fields with different levels of texture and parallax complexity. We provide two experimental results: A human subject and two planar elements at different depths.DARPA (Contract HR0011-16-C-0030

    Turning Corners into Cameras: Principles and Methods

    No full text
    © 2017 IEEE. We show that walls, and other obstructions with edges, can be exploited as naturally-occurring 'cameras' that reveal the hidden scenes beyond them. In particular, we demonstrate methods for using the subtle spatio-temporal radiance variations that arise on the ground at the base of a wall's edge to construct a one-dimensional video of the hidden scene behind the wall. The resulting technique can be used for a variety of applications in diverse physical settings. From standard RGB video recordings, we use edge cameras to recover 1-D videos that reveal the number and trajectories of people moving in an occluded scene. We further show that adjacent wall edges, such as those that arise in the case of an open doorway, yield a stereo camera from which the 2-D location of hidden, moving objects can be recovered. We demonstrate our technique in a number of indoor and outdoor environments involving varied floor surfaces and illumination conditions

    Turning Corners into Cameras: Principles and Methods

    No full text
    We show that walls, and other obstructions with edges, can be exploited as naturally-occurring “cameras” that reveal the hidden scenes beyond them. In particular, we demonstrate methods for using the subtle spatio-temporal radiance variations that arise on the ground at the base of a wall's edge to construct a one-dimensional video of the hidden scene behind the wall. The resulting technique can be used for a variety of applications in diverse physical settings. From standard RGB video recordings, we use edge cameras to recover 1-D videos that reveal the number and trajectories of people moving in an occluded scene. We further show that adjacent wall edges, such as those that arise in the case of an open doorway, yield a stereo camera from which the 2-D location of hidden, moving objects can be recovered. We demonstrate our technique in a number of indoor and outdoor environments involving varied floor surfaces and illumination conditions
    corecore