6 research outputs found

    Development of a Noninvasive Real-Time Ion Energy Distribution Monitoring System Applicable to Collisional Plasma Sheath

    No full text
    As the importance of ion-assisted surface processing based on low-temperature plasma increases, the monitoring of ion energy impinging into wafer surfaces becomes important. Monitoring methods that are noninvasive, real-time, and comprise ion collision in the sheath have received much research attention. However, in spite of this fact, most research was performed in invasive, not real-time, and collisionless ion sheath conditions. In this paper, we develop a noninvasive real-time IED monitoring system based on an ion trajectory simulation where the Monte Carlo collision method and an electrical model are adopted to describe collisions in sheaths. We technically, theoretically, and experimentally investigate the IED measurement with the proposed method, and compared it with the result of IEDs measured via a quadrupole mass spectrometer under various conditions. The comparison results show that there was no major change in the IEDs as radio-frequency power increased or the IED gradually became broad as gas pressure increased, which was in a good agreement with the results of the mass spectrometer

    Determination of Plasma Potential Using an Emissive Probe with Floating Potential Method

    No full text
    Despite over 90 years of study on the emissive probe, a plasma diagnostic tool used to measure plasma potential, its underlying physics has yet to be fully understood. In this study, we investigated the voltages along the hot filament wire and emitting thermal electrons and proved which voltage reflects the plasma potential. Using a circuit model incorporating the floating condition, we found that the lowest potential on the plasma-exposed filament provides a close approximation of the plasma potential. This theoretical result was verified with a comparison of emissive probe measurements and Langmuir probe measurements in inductively coupled plasma. This work provides a significant contribution to the accurate measurement of plasma potential using the emissive probe with the floating potential method

    Characterization of an Etch Profile at a Wafer Edge in Capacitively Coupled Plasma

    No full text
    Recently, the uniformity in the wafer edge area that is normally abandoned in the fabrication process has become important for improving the process yield. The wafer edge structure normally has a difference of height between wafer and electrode, which can result in a sheath bend, distorting important parameters of the etch, such as ionic properties, resulting in nonuniform etching. This problem nowadays is resolved by introducing the supplemented structure called a focus ring on the periphery of the wafer. However, the focus ring is known to be easily eroded by the bombardment of high-energy ions, resulting in etch nonuniformity again, so that the focus ring is a consumable part and must be replaced periodically. Because of this issue, there are many simulation studies being conducted on the correlation between the sheath structural characteristics and materials of focus rings to find the replacement period, but the experimental data and an analysis based on this are not sufficient yet. In this study, in order to experimentally investigate the etching characteristics of the wafer edge area according to the sheath structure of the wafer edge, the etching was performed by increasing the wafer height (thickness) in the wafer edge area. The result shows that the degree of tilt in the etch profile at the wafer edge and the area where the tilt is observed severely are increased with the height difference between the wafer and electrode. This study is expected to provide a database for the characteristics of the etching at the wafer edge and useful information regarding the tolerance of the height difference for untilted etch profile and the replacement period of the etch ring

    On the Quenching of Electron Temperature in Inductively Coupled Plasma

    No full text
    Electron temperature has attracted great attention in plasma processing, as it dominates the production of chemical species and energetic ions that impact the processing. Despite having been studied for several decades, the mechanism behind the quenching of electron temperature with increasing discharge power has not been fully understood. In this work, we investigated the quenching of electron temperature in an inductively coupled plasma source using Langmuir probe diagnostics, and suggested a quenching mechanism based on the skin effect of electromagnetic waves within local- and non-local kinetic regimes. This finding provides insight into the quenching mechanism and has implications for controlling electron temperature, thereby enabling efficient plasma material processing

    Refined Appearance Potential Mass Spectrometry for High Precision Radical Density Quantification in Plasma

    No full text
    As the analysis of complicated reaction chemistry in bulk plasma has become more important, especially in plasma processing, quantifying radical density is now in focus. For this work, appearance potential mass spectrometry (APMS) is widely used; however, the original APMS can produce large errors depending on the fitting process, as the fitting range is not exactly defined. In this research, to reduce errors resulting from the fitting process of the original method, a new APMS approach that eliminates the fitting process is suggested. Comparing the neutral densities in He plasma between the conventional method and the new method, along with the real neutral density obtained using the ideal gas equation, confirmed that the proposed quantification approach can provide more accurate results. This research will contribute to improving the precision of plasma diagnosis and help elucidate the plasma etching process

    Characterization of SiO<sub>2</sub> Plasma Etching with Perfluorocarbon (C<sub>4</sub>F<sub>8</sub> and C<sub>6</sub>F<sub>6</sub>) and Hydrofluorocarbon (CHF<sub>3</sub> and C<sub>4</sub>H<sub>2</sub>F<sub>6</sub>) Precursors for the Greenhouse Gas Emissions Reduction

    No full text
    This paper proposes the use of environmentally friendly alternatives, C6F6 and C4H2F6, as perfluorocarbon (PFC) and hydrofluorocarbon (HFC) precursors, respectively, for SiO2 plasma etching, instead of conventional precursors C4F8 and CHF3. The study employs scanning electron microscopy for etch profile analysis and quadrupole mass spectrometry for plasma diagnosis. Ion bombardment energy at the etching conditions is determined through self-bias voltage measurements, while densities of radical species are obtained using quadrupole mass spectroscopy. The obtained results compare the etch performance, including etch rate and selectivity, between C4F8 and C6F6, as well as between CHF3 and C4H2F6. Furthermore, greenhouse gas (GHG) emissions are evaluated using a million metric ton of carbon dioxide equivalent, indicating significantly lower emissions when replacing conventional precursors with the proposed alternatives. The results suggest that a significant GHG emissions reduction can be achieved from the investigated alternatives without a deterioration in SiO2 etching characteristics. This research contributes to the development of alternative precursors for reducing global warming impacts
    corecore