30 research outputs found

    COVID-19 Antibody Surveillance Among Healthcare Workers in A Non-COVID designated Cardiology Centre

    Get PDF
    BACKGROUND: Reports on healthcare worker antibody response to COVID-19 infection are scarce. We aim to determine theCOVID-19 antibody prevalence among healthcare workers in a cardiology centre and the relationship between case definitioncriteria with the COVID-19 antibody result. METHODS: Convenience sampling was applied. Healthcare workers in SarawakHeart Centre (SHC) cardiology, radiology, and emergency unit were recruited. A survey form on clinical symptoms and closecontact history was distributed. HEALGEN COVID-19 IgG/IgM rapid test was performed using serum/ whole blood specimen.Staff with positive COVID-19 antibody results were referred to the infectious disease specialist for assessment. RESULTS: Atotal of 310 staff were screened. 220(71%) were female, and the mean age was 36±7.7 years old. 46(14.8%) staff reported havingclinical symptoms at some stage from the end of January 2020 to the time of this surveillance. Number of staff who had a historyof overseas travel, close contact with confirmed COVID-19 patients, or had visited places with identified COVID-19 clusterswere 4(1.3%), 24(7.7%) and 24(7.7%) respectively. There were 14 staff (4.5%) with positive tests positive, 2 for IgM, and 12for IgG. All those with positive antibody were subsequently tested negative with RT-PCR test. The history of having clinicalsymptoms and exposure to COVID-19 cluster area were independently associated with a positive IgG result. CONCLUSION:The application of COVID-19 antibody serology rapid tests could determine true exposure of staff to the infection and allowus to reassess existing measures of infection control within the hospital

    Characterizing and Prognosticating Heart Failure with Improved Ejection Fraction Using NT-proBNP, Growth Differentiation Factor 15 and Global Longitudinal Strain

    Get PDF
    Background: Heart failure with improved ejection fraction (HFiEF) is a novel heart failure (HF) subgroup. There are sparse data on using NT-proBNP, growth differentiation factor 15 (GDF15) and global longitudinal strain (GLS) to characterize and prognosticate HFiEF patients. Objectives: (1) To determine the level and correlation between NT-proBNP, GDF-15 and GLS in HFiEF patients. (2) To examine the correlation of each marker with NYHA, MAGGIC prognostic score, HF etiologies, comorbidities status, degree of LVEF/ LV end-diastolic diameter change from baseline and diastolic dysfunction. (3) To look for association of each marker with follow-up LVEF change and 1-year composite mortality or HF events outcome. Materials & Methods: This was a cross-sectional observational study in Sarawak Heart Centre HF clinic. 53 HfiEF patients who had NT-proBNP and GDF15 tests performed were selected. This cohort had no HF events in the past 6 months during the blood tests. Clinical characteristics, echocardiography parameters, and 1-year composite clinical outcome were analyzed retrospectively. Results: The mean age of the cohort was 52 years old and 81% were male. The cohort was highly comorbid (hypertension 71%; diabetes 45.3%; AF 17.3%). Most of the patients (87%) were asymptomatic by NYHA (I) and low rate of composite outcome was observed, 5.7%. The mean NT-proBNP, GDF-15, GLS were 357 pg/ml, 1572 pg/ml, and -12.1% respectively. There were significant moderate correlation between GDF15 with NT-proBNP (r=0.414) and NT-proBNP with GLS (r=-0.351). Higher NT-proBNP and GDF15 levels were associated with poorer MAGGIC prognostic scores (r=0.549, 0.41 respectively). NT-proBNP was the only marker associated with a higher degree of LVEF improvement compare to baseline echocardiography. NT-proBNP was also related to severe diastolic echo parameters. Hypertension and diabetes were strongly associated with higher elevated GDF15 levels. The lower mean GLS level was significantly associated with the presence of composite outcome (-6.45% vs -12.47%, p=0.0). Patients with NT-proBNP levels below the median cutoff had favourable follow-up LVEF improvement (+9.73%, p=0.035). Conclusion: In our HFiEF study cohort, NT-proBNP best correlate and prognosticate future LV remodelling. GDF15 was closely related to systemic illnesses such as diabetes. The role of GLS in our HFiEF cohort remains uncertain

    Derivation and characterization of secondary zinc oxide from rubber glove manufacturing wastewater via adsorption-desorption-precipitation route

    No full text
    The demand for zinc oxide surged during the Covid-19 pandemic as gloves became a necessity in daily life. The washing-off of the zinc oxide used to activate crosslinking in glove latex, generates hazardous zinc-containing wastewater, which is conventionally treated by chemical precipitation using lime and caustic soda. This produces large volumes of hazardous sludge. This study aims to demonstrate removal and recovery of zinc from real wastewater via adsorption-desorption-chemical precipitation approach to produce utilizable secondary zinc oxide. A low-cost palm shell activated carbon was used to adsorb zinc from raw wastewater with 93% efficiency, straightforwardly reducing zinc concentration below 2 mg/L (discharge standard) within 45 min, at pH 7 and 60 °C. Subsequent desorption with 0.3 M HCl facilitated recovery of 63% of secondary zinc oxide from the desorption solutions via chemical precipitation and calcination path. Morphological analysis of the synthesized secondary zinc oxide confirmed high crystallinity of hexagonal wurtzite crystalline structure of typical spherical and nanorods particle shapes measuring 102 nm in size. Surface area comprised of considerable 59.02 m2/g, with pores volume and size of 0.1735 m3/g and 11.76 nm, respectively. This study demonstrated successful recovery of zinc ions from raw industrial wastewater to produce good quality secondary zinc oxide, creating opportunities for zinc recycling, reduction in consumption of chemicals and chemical sludge volume, steering way towards sustainable practices in rubber gloves manufacturing sector

    A State-of-the-Art Review on Biowaste Derived Chitosan Biomaterials for Biosorption of Organic Dyes: Parameter Studies, Kinetics, Isotherms and Thermodynamics

    No full text
    Chitosan is a second-most abundant biopolymer on earth after cellulose. Its unique properties have recently received particular attention from researchers to be used as a potential biosorbent for the removal of organic dyes. However, pure chitosan has some limitations that exhibit lower biosorption capacity, surface area and thermal stability than chitosan composites. The reinforcement materials used for the synthesis of chitosan composites were carbon-based materials, metal oxides and other biopolymers. This paper reviews the effects of several factors such as pH, biosorbent dosage, initial dye concentration, contact time and temperature when utilizing chitosan-based materials as biosorbent for removing of organic dyes from contaminated water. The behaviour of the biosorption process for various chitosan composites was compared and analysed through the kinetic models, isotherm models and thermodynamic parameters. The findings revealed that pseudo-second-order (PSO) and Langmuir isotherm models were best suited for describing most of the biosorption processes or organic dyes. This indicated that monolayer chemisorption of organic dyes occurred on the surface of chitosan composites. Most of the biosorption processes were endothermic, feasible and spontaneous at the low temperature range between 288 K and 320 K. Therefore, chitosan composites were proven to be a promising biosorbent for the removal of organic dyes

    Review on Phytoremediation Potential of Floating Aquatic Plants for Heavy Metals: A Promising Approach

    No full text
    Water pollution due to heavy metals has become a serious environmental concern due to their hazardous properties. Since conventional water remediation techniques are generally ineffective and non-environmentally friendly, phytoremediation has gained increasing attention from worldwide researchers and scientists due to its cost-effectiveness and environmental friendliness. Hence, this review first discussed soil and water remediations. Phytoremediation can be divided into five techniques to remove heavy metals from the polluted environment, namely, phytostabilization (phytosequestration), phytodegradation (phytotransformation), phytofiltration (rhizofiltration), phytoextraction (phytoaccumulation), and phytovolatilization. Four common floating aquatic plants (accumulator plants), such as duckweed (Lemna minor), water lettuce (Pistia stratiotes), water hyacinth (Eichhornia crassipes), and watermoss (Salvinia) were discussed in detail due to their great capability in absorbing the metal ions by their roots and further translocating the metal ions to the aerial parts. Furthermore, the parameter studies, such as optimum pH and temperature of the water, exposure duration, initial metal concentration, water salinity, and the addition of chelating agents, were evaluated. The absorption kinetics of the plants was discussed in detail. In short, phytoremediation is a promising green and sustainable water remediation approach. However, further research is necessary to enhance its practicability and performance at large-scale implementation

    In situ reactive extraction of Jatropha curcas L. seeds assisted by ultrasound: Preliminary studies

    No full text
    Esterification is required to reduce the high free fatty acid (FFA) content of crude Jatropha oil to below 3% prior to transesterification. In this study, raw decorticated Jatropha seeds were employed as the feedstock in in situ reactive extraction assisted by ultrasound in the presence of sulfuric acid (H2SO4) as a catalyst. Extraction efficiency, esterification efficiency, and fatty acid methyl ester (FAME) yield were optimized as a function of ultrasonic pulse mode, amplitude, and H2SO4 amount. The optimum extraction efficiency of 83.96%, esterification efficiency of 71.10%, and FAME yield of 38.58% were achieved at a pulse mode of 5 s on/2 s off, an ultrasonic amplitude of 60%, and an H2SO4 amount of 5 mL in reaction time of 150 min

    In situ

    No full text

    Process intensification of biodiesel synthesis via ultrasound-assisted in situ esterification of Jatropha oil seeds

    No full text
    BACKGROUND: Non-edible oil such as Jatropha oil has high free fatty acids (FFAs) content. Therefore, acid esterification is a suitable route to reduce its FFA content to an acceptable limit (2 FFA%) before being subjected to further transesterification. In the present study, Jatropha seeds were utilized as the feedstock directly instead of Jatropha oil during ultrasound-assisted in situ esterification. The objective of this work is to evaluate the feasibility of in situ esterification of Jatropha oil seeds using sulphuric acid (H 2 SO 4 ) as catalyst with the aid of ultrasound. RESULTS: The reaction parameters (particle size, n-hexane to methanol volume ratio, H 2 SO 4 amount, reaction time and ultrasonic amplitude) were optimized and evaluated in term of extraction and esterification efficiencies as well as fatty acid methyl ester (FAME) yield. The highest extraction efficiency of 83.96%, esterification efficiency of 71.10% and FAME yield of 38.58% were achieved at particle size of 1–2 mm, n-hexane to methanol volume ratio of 3:1, 5 vol% of H 2 SO 4 and ultrasonic amplitude of 60% with reaction time of 150 min. CONCLUSION: Synthesis of biodiesel via ultrasound-assisted in situ esterification of Jatropha oil seeds was successful with considerable yield, which could provide improvement in terms of process intensification and more value added by-products. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industr
    corecore