1,446 research outputs found
Evidence of two-dimensional flat band at the surface of antiferromagnetic kagome metal FeSn
The kagome lattice has long been regarded as a theoretical framework that connects lattice geometry to unusual singularities in electronic structure. Transition metal kagome compounds have been recently identified as a promising material platform to investigate the long-sought electronic flat band. Here we report the signature of a two-dimensional flat band at the surface of antiferromagnetic kagome metal FeSn by means of planar tunneling spectroscopy. Employing a Schottky heterointerface of FeSn and an n-type semiconductor Nb-doped SrTiO3, we observe an anomalous enhancement in tunneling conductance within a finite energy range of FeSn. Our first-principles calculations show this is consistent with a spin-polarized flat band localized at the ferromagnetic kagome layer at the Schottky interface. The spectroscopic capability to characterize the electronic structure of a kagome compound at a thin film heterointerface will provide a unique opportunity to probe flat band induced phenomena in an energy-resolved fashion with simultaneous electrical tuning of its properties. Furthermore, the exotic surface state discussed herein is expected to manifest as peculiar spin-orbit torque signals in heterostructure-based spintronic devices
Olfactory marker protein regulates prolactin secretion and production by modulating Ca2+ and TRH signaling in lactotrophs
Olfactory marker protein (OMP) is a marker of olfactory receptor-mediated chemoreception, even outside the olfactory system. Here, we report that OMP expression in the pituitary gland plays a role in basal and thyrotropin-releasing hormone (TRH)-induced prolactin (PRL) production and secretion. We found that OMP was expressed in human and rodent pituitary glands, especially in PRL-secreting lactotrophs. OMP knockdown in GH4 rat pituitary cells increased PRL production and secretion via extracellular signal-regulated kinase (ERK)1/2 signaling. Real-time PCR analysis and the Ca2+ influx assay revealed that OMP was critical for TRH-induced PRL secretion. OMP-knockout mice showed lower fertility than control mice, which was associated with increased basal PRL production via activation of ERK1/2 signaling and reduced TRH-induced PRL secretion. However, both in vitro and in vivo results indicated that OMP was only required for hormone production and secretion because ERK1/2 activation failed to stimulate cell proliferation. Additionally, patients with prolactinoma lacked OMP expression in tumor tissues with hyperactivated ERK1/2 signaling. These findings indicate that OMP plays a role in PRL production and secretion in lactotrophs through the modulation of Ca2+ and TRH signaling. © 2018 The Author(s).1
Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition
The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future
Bioavailability and metabolism of ccompounds from wholegrain wheat and aleurone‐rich wheat bread
Scope: This work aimed at investigating absorption, metabolism and bioavailability of phenolic compounds after consumption of wholegrain bread or bread enriched with an aleurone fraction. Methods and results: Two commercially available breads were consumed by 15 participants on three occasions and matched for either the amount of ferulic acid in the bread or the amount of bread consumed. Urine was collected for 48 h from all the volunteers for phenolic metabolite quantification. Blood samples were collected for 24 h following bread consumption in 5 participants. A total of 12 and 4 phenolic metabolites were quantified in urine and plasma samples, respectively. Metabolites were sulfate and glucuronic acid conjugates of phenolic acids, and high concentrations of ferulic acid-4’-O-sulfate, dihydroferulic acid-4’-O-sulfate and dihydroferulic acid-O-glucuronide were observed. The bioavailability of ferulic acid was significantly higher from the aleurone-enriched bread when all ferulic acid metabolites were accounted for.Conclusions: The study shows that low amounts of aleurone-enriched bread resulted in equivalent plasma levels of ferulic acid as wholegrain bread. This could suggest that, if the absorbed phenolic metabolites after wholegrain product intake exert health benefits, equal levels could be reached through the consumption of lower doses of refined products enriched in aleurone fraction
The adaptor proteins HAP1a and GRIP1 collaborate to activate kinesin-1 isoform KIF5C
Binding of motor proteins to cellular cargoes is regulated by adaptor proteins. HAP1 and GRIP1 are kinesin-1 adaptors that have been implicated individually in the transport of vesicular cargoes in the dendrites of neurons. We find that HAP1a and GRIP1 form a protein-complex in the brain, and co-operate to activate kinesin-1 subunit KIF5C in vitro. Based upon this co-operative activation of kinesin-1, we propose a modification to the kinesin activation model that incorporates stabilisation of the central hinge region known to be critical to autoinhibition of kinesin-1
CUT-PCR: CRISPR-mediated, ultrasensitive detection of target DNA using PCR
Circulating tumor DNA (ctDNA) has emerged as a tumor-specific biomarker for the early detection of various cancers. To date, several techniques have been devised to enrich the extremely small amounts of ctDNA present in plasma, but they are still insufficient for cancer diagnosis, especially at the early stage. Here, we developed a novel method, CUT (CRISPR-mediated, Ultrasensitive detection of Target DNA)-PCR, which uses CRISPR endonucleases to enrich and detect the extremely small amounts of tumor DNA fragments among the much more abundant wild-type DNA fragments by specifically eliminating the wild-type sequences. We computed that by using various orthologonal CRISPR endonucleases such as SpCas9 and FnCpf1, the CUT-PCR method would be applicable to 80% of known cancer-linked substitution mutations registered in the COSMIC database. We further verified that CUT-PCR together with targeted deep sequencing enables detection of a broad range of oncogenes with high sensitivity (<0.01%) and accuracy, which is superior to conventional targeted deep sequencing. In the end, we successfully applied CUT-PCR to detect sequences with oncogenic mutations in the ctDNA of colorectal cancer patients' blood, suggesting that our technique could be adopted for diagnosing various types of cancer at early stages
Characterization of the near-surface nanocrystalline microstructure of ultrasonically treated Ti-6Al-4V using ASTAR™/precession electron diffraction technique
The surface of Ti-6Al-4V was treated mechanically by applying ultrasonic nanocrystal surface modification. The effect of this treatment on the hardness, compressive residual stresses and fatigue performance were investigated. It is shown that in terms of the measured nanoindentation hardness values and the presence of compressive residual stresses, the treated sample only differed from the as-received sample in the first 200–300 µm area far from the surface. Also, the microstructure very close to the treated surface (\u3c5 µm) was characterized using a relatively new transmission orientation microscopy technique named ASTAR™/precession electron diffraction. Based on different types of results (e.g., index map and virtual bright field image) acquired by this technique, it is concluded that titanium grains smaller than 10 nm exist within the distance of less than 1 µm from the treated surface. Difficulties associated with ASTAR™/precession electron diffraction technique to characterize this challenging near-surface area are discussed
Search for the Decays B^0 -> D^{(*)+} D^{(*)-}
Using the CLEO-II data set we have searched for the Cabibbo-suppressed decays
B^0 -> D^{(*)+} D^{(*)-}. For the decay B^0 -> D^{*+} D^{*-}, we observe one
candidate signal event, with an expected background of 0.022 +/- 0.011 events.
This yield corresponds to a branching fraction of Br(B^0 -> D^{*+} D^{*-}) =
(5.3^{+7.1}_{-3.7}(stat) +/- 1.0(syst)) x 10^{-4} and an upper limit of Br(B^0
-> D^{*+} D^{*-}) D^{*\pm} D^\mp and
B^0 -> D^+ D^-, no significant excess of signal above the expected background
level is seen, and we calculate the 90% CL upper limits on the branching
fractions to be Br(B^0 -> D^{*\pm} D^\mp) D^+
D^-) < 1.2 x 10^{-3}.Comment: 12 page postscript file also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to Physical Review Letter
Study of the B^0 Semileptonic Decay Spectrum at the Upsilon(4S) Resonance
We have made a first measurement of the lepton momentum spectrum in a sample
of events enriched in neutral B's through a partial reconstruction of B0 -->
D*- l+ nu. This spectrum, measured with 2.38 fb**-1 of data collected at the
Upsilon(4S) resonance by the CLEO II detector, is compared directly to the
inclusive lepton spectrum from all Upsilon(4S) events in the same data set.
These two spectra are consistent with having the same shape above 1.5 GeV/c.
From the two spectra and two other CLEO measurements, we obtain the B0 and B+
semileptonic branching fractions, b0 and b+, their ratio, and the production
ratio f+-/f00 of B+ and B0 pairs at the Upsilon(4S). We report b+/b0=0.950
(+0.117-0.080) +- 0.091, b0 = (10.78 +- 0.60 +- 0.69)%, and b+ = (10.25 +- 0.57
+- 0.65)%. b+/b0 is equivalent to the ratio of charged to neutral B lifetimes,
tau+/tau0.Comment: 14 page, postscript file also available at
http://w4.lns.cornell.edu/public/CLN
- …