13,506 research outputs found

    5G Ultra-dense networks with non-uniform Distributed Users

    Full text link
    User distribution in ultra-dense networks (UDNs) plays a crucial role in affecting the performance of UDNs due to the essential coupling between the traffic and the service provided by the networks. Existing studies are mostly based on the assumption that users are uniformly distributed in space. The non-uniform user distribution has not been widely considered despite that it is much closer to the real scenario. In this paper, Radiation and Absorbing model (R&A model) is first adopted to analyze the impact of the non-uniformly distributed users on the performance of 5G UDNs. Based on the R&A model and queueing network theory, the stationary user density in each hot area is investigated. Furthermore, the coverage probability, network throughput and energy efficiency are derived based on the proposed theoretical model. Compared with the uniformly distributed assumption, it is shown that non-uniform user distribution has a significant impact on the performance of UDNs.Comment: 14 pages, 10 figure

    Identification of urinary isoflavone excretion phenotypes related to the cholesterol lowering ability of soy protein in Golden Syrian hamsters

    Get PDF
    Apparent absorption of slavishness varies greatly among individuals, but is relatively stable within an individual. We hypothesized that high urinary Slavonia excreters would show less plasma noonday cholesterol than low Slavonia excreters after soy protein feeding. Fifty Golden Syrian hamsters were fed a high fat/casing diet (n = 10) or a high fat/soy protein diet (n = 40) for 4 wk. Two distinct urinary Slavonia excretion phenotypes were identified using a pairwise correlation plots analysis, or using a hierarchical cluster test. High Slavonia excreters showed significantly greater urinary slavishness (p\u3c0.05) than did low Slavonia excreters. High urinary Slavonia excreters had significantly less noonday cholesterol than did the low Slavonia excreters or casein-fed controls (p \u3c 0.05). Urinary Slavonia excretion phenotypes predicted the cholesterol-lowering efficacy of soy protein. Isoflavone absorbability, probably due to gut microbial ecology, is an important controllable variable in studies of effects of soy protein on blood lipids

    How to interpret a discovery or null result of the 0ν2β0\nu 2\beta decay

    Get PDF
    The Majorana nature of massive neutrinos will be crucially probed in the next-generation experiments of the neutrinoless double-beta (0ν2β0\nu 2\beta) decay. The effective mass term of this process, ⟨m⟩ee\langle m\rangle^{}_{ee}, may be contaminated by new physics. So how to interpret a discovery or null result of the 0ν2β0\nu 2\beta decay in the foreseeable future is highly nontrivial. In this paper we introduce a novel three-dimensional description of ∣⟨m⟩ee∣|\langle m\rangle_{ee}^{}|, which allows us to see its sensitivity to the lightest neutrino mass and two Majorana phases in a transparent way. We take a look at to what extent the free parameters of ∣⟨m⟩ee∣|\langle m\rangle_{ee}^{}| can be well constrained provided a signal of the 0ν2β0\nu 2\beta decay is observed someday. To fully explore lepton number violation, all the six effective Majorana mass terms ⟨m⟩αβ\langle m\rangle_{\alpha\beta}^{} (for α,β=e,μ,τ\alpha, \beta = e, \mu, \tau) are calculated and their lower bounds are illustrated with the two-dimensional contour figures. The effect of possible new physics on the 0ν2β0\nu 2\beta decay is also discussed in a model-independent way. We find that the result of ∣⟨m⟩ee∣|\langle m\rangle_{ee}^{}| in the normal (or inverted) neutrino mass ordering case modified by the new physics effect may somewhat mimic that in the inverted (or normal) mass ordering case in the standard three-flavor scheme. Hence a proper interpretation of a discovery or null result of the 0ν2β0\nu 2\beta decay may demand extra information from some other measurements.Comment: 13 pages, 6 figures, Figures and references update

    Charm-strange baryon strong decays in a chiral quark model

    Full text link
    The strong decays of charm-strange baryons up to N=2 shell are studied in a chiral quark model. The theoretical predictions for the well determined charm-strange baryons, Ξc∗(2645)\Xi_c^*(2645), Ξc(2790)\Xi_c(2790) and Ξc(2815)\Xi_c(2815), are in good agreement with the experimental data. This model is also extended to analyze the strong decays of the other newly observed charm-strange baryons Ξc(2930)\Xi_c(2930), Ξc(2980)\Xi_c(2980), Ξc(3055)\Xi_c(3055), Ξc(3080)\Xi_c(3080) and Ξc(3123)\Xi_c(3123). Our predictions are given as follows. (i) Ξc(2930)\Xi_c(2930) might be the first PP-wave excitation of Ξc′\Xi_c' with JP=1/2−J^P=1/2^-, favors the $|\Xi_c'\ ^2P_\lambda 1/2^->or or |\Xi_c'\ ^4P_\lambda 1/2^->state.(ii) state. (ii) \Xi_c(2980)mightcorrespondtotwooverlapping might correspond to two overlapping P−wavestates-wave states |\Xi_c'\ ^2P_\rho 1/2^->and and |\Xi_c'\ ^2P_\rho 3/2^->,respectively.The, respectively. The \Xi_c(2980)observedinthe observed in the \Lambda_c^+\bar{K}\pifinalstateismostlikelytobethe final state is most likely to be the |\Xi_c'\ ^2P_\rho 1/2^->state,whilethenarrowerresonancewithamass state, while the narrower resonance with a mass m\simeq 2.97GeVobservedinthe GeV observed in the \Xi_c^*(2645)\pichannelfavorstobeassignedtothe channel favors to be assigned to the |\Xi_c'\ ^2P_\rho 3/2^->state.(iii) state. (iii) \Xi_c(3080)favorstobeclassifiedasthe favors to be classified as the |\Xi_c\ S_{\rho\rho} 1/2^+>state,i.e.,thefirstradialexcitation(2S)of state, i.e., the first radial excitation (2S) of \Xi_c.(iv). (iv) \Xi_c(3055)ismostlikelytobethefirst is most likely to be the first D−waveexcitationof-wave excitation of \Xi_cwith with J^P=3/2^+,favorsthe, favors the |\Xi_c\ ^2D_{\lambda\lambda} 3/2^+>state.(v) state. (v) \Xi_c(3123)mightbeassignedtothe might be assigned to the |\Xi_c'\ ^4D_{\lambda\lambda} 3/2^+>,, |\Xi_c'\ ^4D_{\lambda\lambda} 5/2^+>,or, or |\Xi_c\ ^2D_{\rho\rho} 5/2^+>state.Asaby−product,wecalculatethestrongdecaysofthebottombaryons state. As a by-product, we calculate the strong decays of the bottom baryons \Sigma_b^{\pm},, \Sigma_b^{*\pm}and and \Xi_b^*$, which are in good agreement with the recent observations as well.Comment: 15 pages, 9 figure
    • …
    corecore