32,403 research outputs found

    Medium effects in the production and decay of vector mesons in pion-nucleus reactions

    Get PDF
    The ω\omega-, ρ\rho- and ϕ\phi-resonance production and their dileptonic decay in πA\pi^- A reactions at 1.1 - 1.7 GeV/c are calculated within the intranuclear cascade (INC) approach. The invariant mass distribution of the dilepton pair for each resonance can be decomposed in two components which correspond to their decay 'inside' the target nucleus and in the vacuum, respectively. The first components are strongly distorted by the nuclear medium due to resonance-nucleon scattering and a possible mass shift at finite baryon density. These medium modifications are compared to background sources in the dilepton spectrum from πN\pi N bremsstrahlung as well as the Dalitz decays of ω\omega and η\eta mesons produced in the reaction. Detailed predictions for πPb\pi^- Pb reactions at 1.3 and 1.7 GeV/c are made within several momentum bins for the lepton pair.Comment: 29 pages, LaTeX, including 12 postscript figures, UGI-97-07, Nucl. Phys. A., in pres

    Probing the interactions of charmed mesons with nuclei in pˉ\bar p induced reactions

    Get PDF
    We study the perspectives of resonant and nonresonant charmed meson production in pˉ+A\bar{p} + A reactions within the Multiple Scattering Monte Carlo (MSMC) approach. We calculate the production of the resonances Ψ(3770),Ψ(4040)\Psi(3770), \Psi(4040) and Ψ(4160)\Psi(4160) on various nuclei, their propagation and decay to D,Dˉ,D,Dˉ,Ds,DˉsD, \bar{D}, D^*, \bar{D}^*, D_s, \bar{D}_s in the medium and vacuum, respectively. The modifications of the open charm vector mesons in the nuclear medium are found to be rather moderate or even small such that dilepton spectroscopy will require an invariant mass resolution of a few MeV. Furthermore, the elastic and inelastic interactions of the open charm mesons in the medium are taken into account, which can be related to (u,d)(u,d)-, ss- or cc-quark exchange with nucleons. It is found that by studying the D/DˉD/\bar{D} ratio for low momenta in the laboratory (22.2\leq 2-2.2 GeV/c) as a function of target mass AA stringent constraints on the cc-quark exchange cross section can be obtained. On the other hand, the ratios Ds/Ds+D^-_s/D^+_s as well as D/DsD/D^-_s and D/Ds+D/D^+_s at low momenta as a function of AA will permit to fix independently the strength of the ss-quark exchange reaction in DsND^-_s N scattering.Comment: 9 pages, LaTeX, including 9 postscript figures, submitted to Eur. Phys. J.

    On gauge-invariant Green function in 2+1 dimensional QED

    Full text link
    Both the gauge-invariant fermion Green function and gauge-dependent conventional Green function in 2+1 2+1 dimensional QED are studied in the large N N limit. In temporal gauge, the infra-red divergence of gauge-dependent Green function is found to be regulariable, the anomalous dimension is found to be η=643π2N \eta= \frac{64}{3 \pi^{2} N} . This anomalous dimension was argued to be the same as that of gauge-invariant Green function. However, in Coulomb gauge, the infra-red divergence of the gauge-dependent Green function is found to be un-regulariable, anomalous dimension is even not defined, but the infra-red divergence is shown to be cancelled in any gauge-invariant physical quantities. The gauge-invariant Green function is also studied directly in Lorentz covariant gauge and the anomalous dimension is found to be the same as that calculated in temporal gauge.Comment: 8 pages, 6 figures, to appear in Phys. Rev.

    Gauge-invariant Green function in 3+1 dimensional QED (QCD) and 2+1 dimensional Abelian (Non-Abelian) Chern-Simon theory

    Full text link
    By applying the simple and effective method developed to study the the gauge-invariant fermion Green function in 2+1 2+1 dimensional non-compact QED, we study the gauge-invariant Green function in 3+1 3+1 dimensional QED and 2+1 2+1 dimensional non-compact Chern-Simon theory. We also extend our results to the corresponding SU(M) SU(M) non-Abelian gauge theories. Implications for Fractional Quantum Hall effect are briefly discussed.Comment: 8 pages, 4 figures, published versio

    Can Machine Learning, as a RegTech Compliance Tool, lighten the Regulatory Burden for Charitable Organisations in the United Kingdom?

    Get PDF
    Purpose: The purpose of this article is to explore the extent to which machine learning can be used as solution to lighten the compliance and regulatory burden on charitable organisations in the United Kingdom. Design/methodology/approach: The subject is approached through the analysis of data, literature, and domestic and international regulation. The first part of the article summarises the extent of current regulatory obligations faced by charities, these are then, in the second part, set against the potential technological solutions provided by machine learning as at July 2021. Findings: It is suggested that charities can utilise machine learning as a smart technological solution to ease the regulatory burden they face in a growing and impactful sector. Originality: The work is original because it is the first to specifically explore how machine learning as a technological advance can assist charities in meeting the regulatory compliance challenge

    Abelian bosonization approach to quantum impurity problems

    Full text link
    Using Abelian Bosonization, we develop a simple and powerful method to calculate the correlation functions of the two channel Kondo model and its variants. The method can also be used to identify all the possible boundary fixed points and their maximum symmetry, to calculate straightforwardly the finite size spectra, to demonstrate the physical picture at the boundary explicitly. Comparisons with Non-Abelian Bosonization method are made. Some fixed points corresponding to 4 pieces of bulk fermions coupled to s=1/2 impurity are listed.Comment: 12 pages, REVTEX, 1 Table, no figures. To appear in Phys. Rev. Letts. July 21, 199

    Diffuse Neutron Scattering Study of Relaxor Ferroelectric (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3(PZN-xPT)

    Full text link
    Diffuse neutron scattering is a valuable tool to obtain information about the size and orientation of the polar nanoregions that are a characteristic feature of relaxor ferroelectrics. In this paper, we present new diffuse scattering results obtained on Pb(Zn1/3Nb2/3)O3 (PZN for short) and (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3(PZN-xPT)single crystals (with x=4.5 and 9%), around various Bragg reflections and along three symmetry directions in the [100]-[011] zone. Diffuse scattering is observed around reflections with mixed indices, (100), (011) and (300), and along transverse and diagonal directions only. No diffuse scattering is found in longitudinal scans. The diffuse scattering peaks can be fitted well with a Lorentzian function, from which a correlation length is extracted. The correlation length increases with decreasing temperatures down to the transition at Tc, first following a Curie-Weiss law, then departing from it and becoming flat at very low temperatures. These results are interpreted in terms of three temperature regions: 1) dynamic polarization fluctuations (i.e. with a finite lifetime) at high temperatures, 2) static polarization reorientations (condensation of polar nanoregions) that can still reorient as a unit (relaxor behavior) at intermediate temperatures and 3) orientational freezing of the polar nanoregions with random strain fields in pure PZN or a structural phase transition in PZN-xPT at low temperatures. The addition of PT leads to a broadening of the diffuse scattering along the diagonal ([111]) relative to the transverse ([100]) direction, indicating a change in the orientation of the polar regions. Also, with the addition of PT, the polar nanoregions condense at a higher temperature above Tc.Comment: AIP 6x9 style files, 9 pages, 5 figures, Conference-Fundamental Physics of Ferroelectrics 200

    Systematic study of Optical Feshbach Resonances in an ideal gas

    Full text link
    Using a narrow intercombination line in alkaline earth atoms to mitigate large inelastic losses, we explore the Optical Feshbach Resonance (OFR) effect in an ultracold gas of bosonic 88^{88}Sr. A systematic measurement of three resonances allows precise determinations of the OFR strength and scaling law, in agreement with coupled-channels theory. Resonant enhancement of the complex scattering length leads to thermalization mediated by elastic and inelastic collisions in an otherwise ideal gas. OFR could be used to control atomic interactions with high spatial and temporal resolution.Comment: Significant changes to text and figure presentation to improve clarity. Extended supplementary material. 4 pages, 4 figures; includes supplementary material 8 pages, 4 figures. Submitted to Physical Review Letter
    corecore