46,594 research outputs found
Topological Quantum Phase Transition in Synthetic Non-Abelian Gauge Potential
The method of synthetic gauge potentials opens up a new avenue for our
understanding and discovering novel quantum states of matter. We investigate
the topological quantum phase transition of Fermi gases trapped in a honeycomb
lattice in the presence of a synthetic non- Abelian gauge potential. We develop
a systematic fermionic effective field theory to describe a topological quantum
phase transition tuned by the non-Abelian gauge potential and ex- plore its
various important experimental consequences. Numerical calculations on lattice
scales are performed to compare with the results achieved by the fermionic
effective field theory. Several possible experimental detection methods of
topological quantum phase tran- sition are proposed. In contrast to condensed
matter experiments where only gauge invariant quantities can be measured, both
gauge invariant and non-gauge invariant quantities can be measured by
experimentally generating various non-Abelian gauges corresponding to the same
set of Wilson loops
Classical Trajectory Perspective on Double Ionization Dynamics of Diatomic Molecules Irradiated by Ultrashort Intense Laser Pulses
In the present paper, we develop a semiclassical quasi-static model
accounting for molecular double ionization in an intense laser pulse. With this
model, we achieve insight into the dynamics of two highly-correlated valence
electrons under the combined influence of a two-center Coulomb potential and an
intense laser field, and reveal the significant influence of molecular
alignment on the ratio of double over single ion yield. Analysis on the
classical trajectories unveils sub-cycle dynamics of the molecular double
ionization. Many interesting features, such as the accumulation of emitted
electrons in the first and third quadrants of parallel momentum plane, the
regular pattern of correlated momentum with respect to the time delay between
closest collision and ionization moment, are revealed and successfully
explained by back analyzing the classical trajectories. Quantitative agreement
with experimental data over a wide range of laser intensities from tunneling to
over-the-barrier regime is presented.Comment: 8 pages, 9 figure
Nature vs. Nurture: Predictability in Low-Temperature Ising Dynamics
Consider a dynamical many-body system with a random initial state
subsequently evolving through stochastic dynamics. What is the relative
importance of the initial state ("nature") vs. the realization of the
stochastic dynamics ("nurture") in predicting the final state? We examined this
question for the two-dimensional Ising ferromagnet following an initial deep
quench from to . We performed Monte Carlo studies on the
overlap between "identical twins" raised in independent dynamical environments,
up to size . Our results suggest an overlap decaying with time as
with ; the same exponent holds for a
quench to low but nonzero temperature. This "heritability exponent" may equal
the persistence exponent for the 2D Ising ferromagnet, but the two differ more
generally.Comment: 5 pages, 3 figures; new version includes results for nonzero
temperatur
Classification of a supersolid: Trial wavefunctions, Symmetry breakings and Excitation spectra
A state of matter is characterized by its symmetry breaking and elementary
excitations.
A supersolid is a state which breaks both translational symmetry and internal
symmetry.
Here, we review some past and recent works in phenomenological
Ginsburg-Landau theories, ground state trial wavefunctions and microscopic
numerical calculations. We also write down a new effective supersolid
Hamiltonian on a lattice.
The eigenstates of the Hamiltonian contains both the ground state
wavefunction and all the excited states (supersolidon) wavefunctions. We
contrast various kinds of supersolids in both continuous systems and on
lattices, both condensed matter and cold atom systems. We provide additional
new insights in studying their order parameters, symmetry breaking patterns,
the excitation spectra and detection methods.Comment: REVTEX4, 19 pages, 3 figure
On gauge-invariant Green function in 2+1 dimensional QED
Both the gauge-invariant fermion Green function and gauge-dependent
conventional Green function in dimensional QED are studied in the large
limit. In temporal gauge, the infra-red divergence of gauge-dependent
Green function is found to be regulariable, the anomalous dimension is found to
be . This anomalous dimension was argued to be
the same as that of gauge-invariant Green function. However, in Coulomb gauge,
the infra-red divergence of the gauge-dependent Green function is found to be
un-regulariable, anomalous dimension is even not defined, but the infra-red
divergence is shown to be cancelled in any gauge-invariant physical quantities.
The gauge-invariant Green function is also studied directly in Lorentz
covariant gauge and the anomalous dimension is found to be the same as that
calculated in temporal gauge.Comment: 8 pages, 6 figures, to appear in Phys. Rev.
Gauge-invariant Green function in 3+1 dimensional QED (QCD) and 2+1 dimensional Abelian (Non-Abelian) Chern-Simon theory
By applying the simple and effective method developed to study the the
gauge-invariant fermion Green function in dimensional non-compact QED,
we study the gauge-invariant Green function in dimensional QED and dimensional non-compact Chern-Simon theory. We also extend our results to
the corresponding non-Abelian gauge theories. Implications for
Fractional Quantum Hall effect are briefly discussed.Comment: 8 pages, 4 figures, published versio
- …