1,173 research outputs found

    Characterization of high finesse mirrors: loss, phase shifts and mode structure in an optical cavity

    Get PDF
    An extensive characterization of high finesse optical cavities used in cavity QED experiments is described. Different techniques in the measurement of the loss and phase shifts associated with the mirror coatings are discussed and their agreement shown. Issues of cavity field mode structure supported by the dielectric coatings are related to our effort to achieve the strongest possible coupling between an atom and the cavity.Comment: 8 pages, 4 figure

    A pulsed, low-temperature beam of supersonically cooled free radical OH molecules

    Full text link
    An improved system for creating a pulsed, low-temperature molecular beam of OH radicals has been developed. We use a pulsed discharge to create OH from H2_2O seeded in Xe during a supersonic expansion, where the high-voltage pulse duration is significantly shorter than the width of the gas pulse. The pulsed discharge allows for control of the mean speed of the molecular packet as well as maintains a low temperature supersonic expansion. A hot filament is placed in the source chamber to initiate the discharge for shorter durations and at lower voltages, resulting in a translationally and rotationally colder packet of OH molecules

    Quantum manipulation and measurement of single atoms in optical cavity QED

    Full text link

    Quantum Efficiency of Charge Qubit Measurements Using a Single Electron Transistor

    Full text link
    The quantum efficiency, which characterizes the quality of information gain against information loss, is an important figure of merit for any realistic quantum detectors in the gradual process of collapsing the state being measured. In this work we consider the problem of solid-state charge qubit measurements with a single-electron-transistor (SET). We analyze two models: one corresponds to a strong response SET, and the other is a tunable one in response strength. We find that the response strength would essentially bound the quantum efficiency, making the detector non-quantum-limited. Quantum limited measurements, however, can be achieved in the limits of strong response and asymmetric tunneling. The present study is also associated with appropriate justifications for the measurement and backaction-dephasing rates, which were usually evaluated in controversial methods.Comment: 10 pages, 2 figure

    Cryo-EM structure of the polyphosphate polymerase VTC reveals coupling of polymer synthesis to membrane transit.

    Get PDF
    The eukaryotic vacuolar transporter chaperone (VTC) complex acts as a polyphosphate (polyP) polymerase that synthesizes polyP from adenosine triphosphate (ATP) and translocates polyP across the vacuolar membrane to maintain an intracellular phosphate (P <sub>i</sub> ) homeostasis. To discover how the VTC complex performs its function, we determined a cryo-electron microscopy structure of an endogenous VTC complex (Vtc4/Vtc3/Vtc1) purified from Saccharomyces cerevisiae at 3.1 Å resolution. The structure reveals a heteropentameric architecture of one Vtc4, one Vtc3, and three Vtc1 subunits. The transmembrane region forms a polyP-selective channel, likely adopting a resting state conformation, in which a latch-like, horizontal helix of Vtc4 limits the entrance. The catalytic Vtc4 central domain is located on top of the pseudo-symmetric polyP channel, creating a strongly electropositive pathway for nascent polyP that can couple synthesis to translocation. The SPX domain of the catalytic Vtc4 subunit positively regulates polyP synthesis by the VTC complex. The noncatalytic Vtc3 regulates VTC through a phosphorylatable loop. Our findings, along with the functional data, allow us to propose a mechanism of polyP channel gating and VTC complex activation

    Efficient scheme for one-way quantum computing in thermal cavities

    Full text link
    We propose a practical scheme for one-way quantum computing based on efficient generation of 2D cluster state in thermal cavities. We achieve a controlled-phase gate that is neither sensitive to cavity decay nor to thermal field by adding a strong classical field to the two-level atoms. We show that a 2D cluster state can be generated directly by making every two atoms collide in an array of cavities, with numerically calculated parameters and appropriate operation sequence that can be easily achieved in practical Cavity QED experiments. Based on a generated cluster state in Box(4)^{(4)} configuration, we then implement Grover's search algorithm for four database elements in a very simple way as an example of one-way quantum computing.Comment: 6 pages, 3 figure

    Kondo effect in crossed Luttinger liquids

    Full text link
    We study the Kondo effect in two crossed Luttinger liquids, using Boundary Conformal Field Theory. We predict two types of critical behaviors: either a two-channel Kondo fixed point with a nonuniversal Wilson ratio, or a new theory with an anomalous response identical to that found by Furusaki and Nagaosa (for the Kondo effect in a single Luttinger liquid). Moreover, we discuss the relevance of perturbations like channel anisotropy, and we make links with the Kondo effect in a two-band Hubbard system modeled by a channel-dependent Luttinger Hamiltonian. The suppression of backscattering off the impurity produces a model similar to the four-channel Kondo theory.Comment: 7 pages, RevteX, to be published in Physical Review

    Sensitivity to measurement perturbation of single atom dynamics in cavity QED

    Get PDF
    We consider continuous observation of the nonlinear dynamics of single atom trapped in an optical cavity by a standing wave with intensity modulation. The motion of the atom changes the phase of the field which is then monitored by homodyne detection of the output field. We show that the conditional Hilbert space dynamics of this system, subject to measurement induced perturbations, depends strongly on whether the corresponding classical dynamics is regular or chaotic. If the classical dynamics is chaotic the distribution of conditional Hilbert space vectors corresponding to different observation records tends to be orthogonal. This is a characteristic feature of hypersensitivity to perturbation for quantum chaotic systems.Comment: 11 pages, 6 figure

    Trapping of Single Atoms with Single Photons in Cavity QED

    Get PDF
    Two recent experiments have reported the trapping of individual atoms inside optical resonators by the mechanical forces associated with single photons [Hood et al., Science 287, 1447 (2000) and Pinkse et al., Nature 404, 365 (2000)]. Here we analyze the trapping dynamics in these settings, focusing on two points of interest. Firstly, we investigate the extent to which light-induced forces in these experiments are distinct from their free-space counterparts. Secondly, we explore the quantitative features of the resulting atomic motion and how these dynamics are mapped onto variations of the intracavity field. Not surprisingly, qualitatively distinct atomic dynamics arise as the coupling and dissipative rates are varied. For the experiment of Hood et al., we show that atomic motion is largely conservative and is predominantly in radial orbits transverse to the cavity axis. A comparison with the free-space theory demonstrates that the fluctuations of the dipole force are suppressed by an order of magnitude. This effect is based upon the Jaynes-Cummings eigenstates of the atom-cavity system and represents qualitatively new physics for optical forces at the single-photon level. By contrast, even in a regime of strong coupling in the experiment of Pinkse et al., there are only small quantitative distinctions between the free-space theory and the quantum theory, so it is not clear that description of this experiment as a novel single-quantum trapping effect is necessary. The atomic motion is strongly diffusive, leading to an average localization time comparable to the time for an atom to transit freely through the cavity and to a reduction in the ability to infer aspects of the atomic motion from the intracavity photon number.Comment: 19 pages, 22 figure files, REVTEX, corrected spelling, LaTeX now produces postscript which includes figures, minor changes to figures. Final version to be published in Physical Review A, expanded summary of results in introduction, minor changes to figures and tex

    Determinisitic Optical Fock State Generation

    Get PDF
    We present a scheme for the deterministic generation of N-photon Fock states from N three-level atoms in a high-finesse optical cavity. The method applies an external laser pulsethat generates an NN-photon output state while adiabatically keeping the atom-cavity system within a subspace of optically dark states. We present analytical estimates of the error due to amplitude leakage from these dark states for general N, and compare it with explicit results of numerical simulations for N \leq 5. The method is shown to provide a robust source of N-photon states under a variety of experimental conditions and is suitable for experimental implementation using a cloud of cold atoms magnetically trapped in a cavity. The resulting N-photon states have potential applications in fundamental studies of non-classical states and in quantum information processing.Comment: 25 pages, 9 figure
    corecore