35 research outputs found

    Methyl 6-bromo-7-meth­oxy-1,3-benzodioxole-5-carboxyl­ate

    Get PDF
    The non-H atoms of the title compound, C10H9BrO5, are essentially coplanar, with the exception of the ester group [the O=C—O—C torsion angle is −143.4 (3)°]

    Synthesis and two-photon absorption property of novel salen complexes incorporated with two pendant azo dyes

    Get PDF
    New salen compounds have been developed to possess two pendant azo dye chromophores. The two-photon absorption properties have been observed which result from the chromophores. The additive property has been found to exist as a result of no detrimental dipole–dipole interaction between chromophores.NASA (NCC3-552)NSF (# HRD-0630456)FAPES

    Diploid mycelia of Ustilago esculenta fails to maintain sustainable proliferation in host plant

    Get PDF
    Smut fungi display a uniform life cycle including two phases: a saprophytic phase in vitro and a parasitic phase in host plants. Several apathogenic smut fungi are found, lacking suitable hosts in their habitat. Interestingly, MT-type Ustilago esculenta was found to maintain a parasitic life, lacking the saprophytic phase. Its long period of asexual proliferation in plant tissue results in severe defects in certain functions. In this study, the growth dynamics of U. esculenta in plant tissues were carefully observed. The mycelia of T- and MT-type U. esculenta exhibit rapid growth after karyogamy and aggregate between cells. While T-type U. esculenta successfully forms teliospores after aggregation, the aggregated mycelia of MT-type U. esculenta gradually disappeared after a short period of massive proliferation. It may be resulted by the lack of nutrition such as glucose and sucrose. After overwintering, infected Zizania latifolia plants no longer contained diploid mycelia resulting from karyogamy. This indicated that diploid mycelia failed to survive in plant tissues. It seems that diploid mycelium only serves to generate teliospores. Notably, MT-type U. esculenta keeps the normal function of karyogamy, though it is not necessary for its asexual life in plant tissue. Further investigations are required to uncover the underlying mechanism, which would improve our understanding of the life cycle of smut fungi and help the breeding of Z. latifolia

    An Endoglucanase Secreted by Ustilago esculenta Promotes Fungal Proliferation

    No full text
    Ustilago esculenta is a fungus of two morphological forms, among the filamentous dikaryon that can induce the plant stem to expand to form fleshy stem. In order to establish biotrophy with Zizania latifolia which belongs to the tribe Oryzeae (Poaceae), U. esculenta firstly needs to secrete a bunch of effectors, among them being cell wall degrading enzymes (CWDEs). We have isolated a gene, UeEgl1, which was differentially expressed in MT-type and T-type U. esculenta at an early stage of infection, and specifically induced in the filamentous growth of the T-type. Bioinformatics analysis and enzyme activity assay indicated that UeEgl1 functions outside the cell as a β-1,4-endoglucanase with a conserved domain of the glycosyl hydrolase family 45 (GH45) which targets the main component of the plant cell wall β-1,4 linked glycosidic bonds. The phenotype analysis of UeEgl1 deletion mutants and UeEgl1 over-expression transformants showed that UeEgl1 had no significant effect on the budding, cell fusion, and filamentous growth of U. esculenta in vitro. Further study found that over-expression of UeEgl1 promoted the proliferation of mycelia inside Z. latifolia, and raised plant defense responses. The above results show that the UeEgl1 gene may play an important role in the early stage of infection through the decomposition of the plant cell wall

    Elucidation of Response Mechanism of a Potentiometric Sweetness Sensor with a Lipid/Polymer Membrane for Uncharged Sweeteners

    No full text
    Nowadays, the utilization of a taste sensor with lipid/polymer membranes is one of the most accurate and objective ways to evaluate the tastes of solutions. However, it has been difficult to evaluate uncharged sweet substances, such as sucrose, because the conventional taste sensor uses the potentiometric measurement, which is mainly based on changes in the surface electric charge density of the membrane. Previous studies have reported that a sweetness sensor called GL1 can evaluate the sweetness of sugars and sugar alcohols, and is commercially available for food, beverage, and pharmaceutical industries. However, the response mechanism of GL1 has not been fully elucidated. In this study, we focus on clarifying the effect of concentrations and types of metal ions in the conditioning solution on the response mechanism of the sweetness sensor GL1. Moreover, according to the different concentrations and types of metal ions in conditioning solutions, the complex formation and the hydrated radius were considered to influence the membrane potential measured in a reference solution and the sensor responses. The purpose of this study is to elucidate the response mechanism and improve the selectivity and sensitivity of the sweetness sensor

    Structural insights into IL-6 signaling inhibition by therapeutic antibodies

    No full text
    Summary: Antibody inhibitors of the interleukin-6 (IL-6) signaling pathway, such as tocilizumab and sarilumab, have been used to treat rheumatoid arthritis, chimeric antigen receptor T cell-induced cytokine storm, and severe COVID-19 pneumonia. Here, we solve the cryogenic electron microscopy structures of sarilumab and tocilizumab in complex with IL-6R to resolutions of 3.2 and 3.3 Å, respectively. These structures reveal that both tocilizumab and sarilumab bind to the D3 domain of IL-6R. The binding surfaces of the two antibodies largely overlap, but the detailed interactions are different. Functional studies of various mutants show results consistent with our structural analysis of the antibodies and IL-6R interactions. Structural comparisons with the IL-6/IL-6R/gp130 complex indicate that sarilumab and tocilizumab probably inhibit IL-6/IL-6R signaling by competing for the IL-6 binding site. In summary, this work reveals the antibody-blocking mechanism of the IL-6 signaling pathway and paves the way for future antibody discovery

    Investigation on the differentiation of two Ustilago esculenta strains - implications of a relationship with the host phenotypes appearing in the fields

    No full text
    Abstract Background Ustilago esculenta, a pathogenic basidiomycete fungus, infects Zizania latifolia to form edible galls named Jiaobai in China. The distinct growth conditions of U. esculenta induced Z. latifolia to form three different phenotypes, named male Jiaobai, grey Jiaobai and white Jiaobai. The aim of this study is to characterize the genetic and morphological differences that distinguish the two U. esculenta strains. Results In this study, sexually compatible haploid sporidia UeT14/UeT55 from grey Jiaobai (T strains) and UeMT10/UeMT46 from white Jiaobai (MT strains) were isolated. Meanwhile, we successfully established mating and inoculation assays. Great differences were observed between the T and MT strains. First, the MT strains had a defect in development, including lower teliospore formation frequency and germination rate, a slower growth rate and a lower growth mass. Second, they differed in the assimilation of nitrogen sources in that the T strains preferred urea and the MT strains preferred arginine. In addition, the MT strains were more sensitive to external signals, including pH and oxidative stress. Third, the MT strains showed an infection defect, resulting in an endophytic life in the host. This was in accordance with multiple mutated pathogenic genes discovered in the MT strains by the non-synonymous mutation analysis of the genome re-sequencing data between the MT and T strains (GenBank accession numbers of the genome re-sequencing data: JTLW00000000 for MT strains and SRR5889164 for T strains). Conclusion The MT strains appeared to have defects in growth and infection and were more sensitive to external signals compared to the T strains. They displayed an absolutely stable endophytic life in the host without an infection cycle. Accordingly, they had multiple gene mutations occurring, especially in pathogenicity. In contrast, the T strains, as phytopathogens, had a complete survival life cycle, in which the formation of teliospores is important for adaption and infection, leading to the appearance of the grey phenotype. Further studies elucidating the molecular differences between the U. esculenta strains causing differential host phenotypes will help to improve the production and formation of edible white galls

    Progress in exercise and energy metabolism regulation

    No full text

    Elucidation of Response Mechanism of a Potentiometric Sweetness Sensor with a Lipid/Polymer Membrane for Uncharged Sweeteners

    No full text
    Nowadays, the utilization of a taste sensor with lipid/polymer membranes is one of the most accurate and objective ways to evaluate the tastes of solutions. However, it has been difficult to evaluate uncharged sweet substances, such as sucrose, because the conventional taste sensor uses the potentiometric measurement, which is mainly based on changes in the surface electric charge density of the membrane. Previous studies have reported that a sweetness sensor called GL1 can evaluate the sweetness of sugars and sugar alcohols, and is commercially available for food, beverage, and pharmaceutical industries. However, the response mechanism of GL1 has not been fully elucidated. In this study, we focus on clarifying the effect of concentrations and types of metal ions in the conditioning solution on the response mechanism of the sweetness sensor GL1. Moreover, according to the different concentrations and types of metal ions in conditioning solutions, the complex formation and the hydrated radius were considered to influence the membrane potential measured in a reference solution and the sensor responses. The purpose of this study is to elucidate the response mechanism and improve the selectivity and sensitivity of the sweetness sensor
    corecore