10 research outputs found

    Long-Term Exposure of Fine Particulate Matter Causes Hypertension by Impaired Renal D1 Receptor-Mediated Sodium Excretion via Upregulation of G-Protein-Coupled Receptor Kinase Type 4 Expression in Sprague-Dawley Rats.

    Get PDF
    BACKGROUND: Epidemiological evidence supports an important association between air pollution exposure and hypertension. However, the mechanisms are not clear. METHODS AND RESULTS: Our present study found that long-term exposure to fine particulate matter (PM2.5) causes hypertension and impairs renal sodium excretion, which might be ascribed to lower D1 receptor expression and higher D1 receptor phosphorylation, accompanied with a higher G-protein-coupled receptor kinase type 4 (GRK4) expression. The in vivo results were confirmed in in vitro studies (ie, PM2.5 increased basal and decreased D1 receptor mediated inhibitory effect on Na+-K+ ATPase activity, decreased D1 receptor expression, and increased D1 receptor phosphorylation in renal proximal tubule cells). The downregulation of D1 receptor expression and function might be attributable to a higher GRK4 expression after the exposure of renal proximal tubule cells to PM2.5, because downregulation of GRK4 by small-interfering RNA reversed the D1 receptor expression and function. Because of the role of reactive oxygen species on D1 receptor dysfunction and its relationship with air pollution exposure, we determined plasma reactive oxygen species and found the levels higher in PM2.5-treated Sprague-Dawley rats. Inhibition of reactive oxygen species by tempol (4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl) reduced blood pressure and increased sodium excretion in PM2.5-treated Sprague-Dawley rats, accompanied by an increase in the low D1 receptor expression, and decreased the hyperphosphorylated D1 receptor and GRK4 expression. CONCLUSIONS: Our present study indicated that long-term exposure of PM2.5 increases blood pressure by decreasing D1 receptor expression and function; reactive oxygen species, via regulation of GRK4 expression, plays an important role in the pathogenesis of PM2.5-induced hypertension

    Innovative Methodology of On-Line Point Cloud Data Compression for Free-Form Surface Scanning Measurement

    No full text
    In order to obtain a highly accurate profile of a measured three-dimensional (3D) free-form surface, a scanning measuring device has to produce extremely dense point cloud data with a great sampling rate. Bottlenecks are created owing to inefficiencies in manipulating, storing and transferring these data, and parametric modelling from them is quite time-consuming work. In order to effectively compress the dense point cloud data obtained from a 3D free-form surface during the real-time scanning measuring process, this paper presents an innovative methodology of an on-line point cloud data compression algorithm for 3D free-form surface scanning measurement. It has the ability to identify and eliminate data redundancy caused by geometric feature similarity between adjacent scanning layers. At first, the new algorithm adopts the bi-Akima method to compress the initial point cloud data; next, the data redundancy existing in the compressed point cloud is further identified and eliminated; then, we can get the final compressed point cloud data. Finally, the experiment is conducted, and the results demonstrate that the proposed algorithm is capable of obtaining high-quality data compression results with higher data compression ratios than other existing on-line point cloud data compression/reduction methods

    In Utero Exposure to Fine Particulate Matter Causes Hypertension Due to Impaired Renal Dopamine D1 Receptor in Offspring.

    No full text
    Background/Aims: Adverse environment in utero can modulate adult phenotypes including blood pressure. Fine particulate matter (PM2.5) exposure in utero causes hypertension in the offspring, but the exact mechanisms are not clear. Renal dopamine D1 receptor (D1R), regulated by G protein-coupled receptor kinase type 4 (GRK4), plays an important role in the regulation of renal sodium transport and blood pressure. In this present study, we determined if renal D1R dysfunction is involved in PM2.5–induced hypertension in the offspring. Methods: Pregnant Sprague–Dawley rats were given an oropharyngeal drip of PM2.5 (1.0 mg/kg) at gestation day 8, 10, and 12. The blood pressure, 24-hour sodium excretion, and urine volume were measured in the offspring. The expression levels of GRK4 and D1R were determined by immunoblotting. The phosphorylation of D1R was investigated using immunoprecipitation. Plasma malondialdehyde and superoxide dismutase levels were also measured in the offspring. Results: As compared with saline-treated dams, offspring of PM2.5-treated dams had increased blood pressure, impaired sodium excretion, and reduced D1R-mediated natriuresis and diuresis, accompanied by decreased renal D1R expression and GRK4 expression. The impaired renal D1R function and increased GRK4 expression could be caused by increased reactive oxidative stress (ROS) induced by PM2.5 exposure. Administration of tempol, a redox-cycling nitroxide, for 4 weeks in the offspring of PM2.5-treated dam normalized the decreased renal D1R expression and increased renal D1R phosphorylation and GRK4 expression. Furthermore, tempol normalized the increased renal expression of c-Myc, a transcription factor that regulates GRK4 expression. Conclusions: In utero exposure to PM2.5 increases ROS and GRK4 expression, impairs D1R-mediated sodium excretion, and increases blood pressure in the offspring. These studies suggest that normalization of D1R function may be a target for the prevention and treatment of the hypertension in offspring of mothers exposed to PM2.5 during pregnancy

    In Utero Exposure to Fine Particulate Matter Causes Hypertension Due to Impaired Renal Dopamine D1 Receptor in Offspring

    No full text
    Background/Aims: Adverse environment in utero can modulate adult phenotypes including blood pressure. Fine particulate matter (PM2.5) exposure in utero causes hypertension in the offspring, but the exact mechanisms are not clear. Renal dopamine D1 receptor (D1R), regulated by G protein-coupled receptor kinase type 4 (GRK4), plays an important role in the regulation of renal sodium transport and blood pressure. In this present study, we determined if renal D1R dysfunction is involved in PM2.5–induced hypertension in the offspring. Methods: Pregnant Sprague–Dawley rats were given an oropharyngeal drip of PM2.5 (1.0 mg/kg) at gestation day 8, 10, and 12. The blood pressure, 24-hour sodium excretion, and urine volume were measured in the offspring. The expression levels of GRK4 and D1R were determined by immunoblotting. The phosphorylation of D1R was investigated using immunoprecipitation. Plasma malondialdehyde and superoxide dismutase levels were also measured in the offspring. Results: As compared with saline-treated dams, offspring of PM2.5-treated dams had increased blood pressure, impaired sodium excretion, and reduced D1R-mediated natriuresis and diuresis, accompanied by decreased renal D1R expression and GRK4 expression. The impaired renal D1R function and increased GRK4 expression could be caused by increased reactive oxidative stress (ROS) induced by PM2.5 exposure. Administration of tempol, a redox-cycling nitroxide, for 4 weeks in the offspring of PM2.5-treated dam normalized the decreased renal D1R expression and increased renal D1R phosphorylation and GRK4 expression. Furthermore, tempol normalized the increased renal expression of c-Myc, a transcription factor that regulates GRK4 expression. Conclusions: In utero exposure to PM2.5 increases ROS and GRK4 expression, impairs D1R-mediated sodium excretion, and increases blood pressure in the offspring. These studies suggest that normalization of D1R function may be a target for the prevention and treatment of the hypertension in offspring of mothers exposed to PM2.5 during pregnancy
    corecore