319 research outputs found
Evidence of local superconductivity in granular Bi nanowires fabricated by electrodeposition
An unusual enhancement of resistance (i.e., superresistivity) below a certain
characteristic temperature Tsr was observed in granular Bi nanowires. This
superresistive state was found to be dependent on the applied magnetic field
(H) as well as the excitation current (I). The suppression of Tsr by magnetic
field resembles that of a superconductor. The observed superresistivity appears
to be related to the nucleation of local superconductivity inside the granular
nanowire without long-range phase coherence. The phenomenon is reminiscent of
the Bose-insulator observed previously in ultra thin two-dimensional (2D)
superconducting films and 3D percolative superconducting films.Comment: 11 pages, 5 figures. submitted to PR
The Antioxidative Role of Autophagy in Hearing Loss
Autophagy, a highly conserved cellular mechanism, plays an essential role in the development and pathology of many central and peripheral nervous system diseases. The auditory system, especially hair cells (HCs) and spiral ganglion neurons (SGNs) in the inner ear, are postmitotic cells, which are extremely reliant on cellular homeostasis and energy supply. Therefore, autophagy may be involved in contributing to and facilitating the normal function of inner ear cells. Recently, studies on hearing loss induced by ototoxic drugs, noise exposure and other factors have revealed that autophagy could serve in an antioxidative capacity and could possess the potential to treat sensorineural hearing loss (SNHL). Therefore, here we review previous studies concerning autophagy and SNHL to gain insight into the role of autophagic mechanisms in inner ear disorders
Cognitive Decline, Dementia, Alzheimer’s Disease and Presbycusis: Examination of the Possible Molecular Mechanism
The incidences of presbycusis and dementia are high among geriatric diseases. Presbycusis is the general term applied to age-related hearing loss and can be caused by many risk factors, such as noise exposure, smoking, medication, hypertension, family history, and other factors. Mutation of mitochondrial DNA in hair cells, spiral ganglion cells, and stria vascularis cells of the cochlea is the basic mechanism of presbycusis. Dementia is a clinical syndrome that includes the decline of cognitive and conscious states and is caused by many neurodegenerative diseases, of which Alzheimer’s disease (AD) is the most common. The amyloid cascade hypothesis and tau hypothesis are the two major hypotheses that describe the AD pathogenic mechanism. Recent studies have shown that deposition of Aβ and hyperphosphorylation of the tau protein may cause mitochondrial dysfunction. An increasing number of papers have reported that, on one hand, the auditory system function in AD patients is damaged as their cognitive ability declines and that, on the other hand, hearing loss may be a risk factor for dementia and AD. However, the relationship between presbycusis and AD is still unknown. By reviewing the relevant literature, we found that the SIRT1-PGC1α pathway and LKB1 (or CaMKKβ)-AMPK pathway may play a role in the preservation of cerebral neuron function by taking part in the regulation of mitochondrial function. Then vascular endothelial growth factor signal pathway is activated to promote vascular angiogenesis and maintenance of the blood–brain barrier integrity. Recently, experiments have also shown that their expression levels are altered in both presbycusis and AD mouse models. Therefore, we propose that exploring the specific molecular link between presbycusis and AD may provide new ideas for their prevention and treatment
The influence of metabolic syndrome on age-related hearing loss from the perspective of mitochondrial dysfunction
With the increase in life expectancy in the global population, aging societies have emerged in many countries, including China. As a common sensory defect in the elderly population, the prevalence of age-related hearing loss and its influence on society are increasing yearly. Metabolic syndrome is currently one of the main health problems in the world. Many studies have demonstrated that metabolic syndrome and its components are correlated with a variety of age-related diseases of the peripheral sensory system, including age-related hearing loss. Both age-related hearing loss and metabolic syndrome are high-prevalence chronic diseases, and many people suffer from both at the same time. In recent years, more and more studies have found that mitochondrial dysfunction occurs in both metabolic syndrome and age-related hearing loss. Therefore, to better understand the impact of metabolic syndrome on age-related hearing loss from the perspective of mitochondrial dysfunction, we reviewed the literature related to the relationship between age-related hearing loss and metabolic syndrome and their components to discern the possible role of mitochondria in both conditions
Metal-free photo-induced sulfidation of aryl iodide and other chalcogenation
A photo-induced C-S radical cross-coupling of aryl iodides and disulfides under transition-metal and external photosensitizer free conditions for the synthesis of aryl sulfides at room temperature has been presented, which features mild reaction conditions, broad substrate scope, high efficiency, and good functional group compatibility. The developed methodology could be readily applied to forge C-S bond in the field of pharmaceutical and material science
Doublade: Unknown Vulnerability Detection in Smart Contracts Via Abstract Signature Matching and Refined Detection Rules
With the prosperity of smart contracts and the blockchain technology, various
security analyzers have been proposed from both the academia and industry to
address the associated risks. Yet, there does not exist a high-quality
benchmark of smart contract vulnerability for security research. In this study,
we propose an approach towards building a high-quality vulnerability benchmark.
Our approach consists of two parts. First, to improve recall, we propose to
search for similar vulnerabilities in an automated way by leveraging the
abstract vulnerability signature (AVS). Second, to remove the false positives
(FPs) due to AVS-based matching, we summarize the detection rules of existing
tools and apply the refined rules by considering various defense mechanisms
(DMs). By integrating AVS-based code matching and the refined detection rules
(RDR), our approach achieves higher precision and recall. On the collected
76,354 contracts, we build a benchmark consisting of 1,219 vulnerabilities
covering five different vulnerability types identified together by our tool
(DOUBLADE) and other three scanners. Additionally, we conduct a comparison
between DOUBLADE and the others, on an additional 17,770 contracts. Results
show that DOUBLADE can yield a better detection accuracy with similar execution
time
- …