4 research outputs found

    Spatiotemporal dynamics in a toxin-producing predator–prey model with threshold harvesting

    Get PDF
    In this paper, we propose a toxin-producing predator–prey model with threshold harvesting and study spatiotemporal dynamics of the model under the homogeneous Neumann boundary conditions. At first, the persistence property of solutions to the system is investigated. Then the explicit requirements for the existence of nonconstant steady state solutions are derived by studying the relevant characteristic equation. These steady states occur from related constant steady states via steady state bifurcation. Throughout the analysis of the amplitude equations of Turing pattern by the multiple scale method, pattern formation can be found. Finally, we display  umerical simulations to verify the theoretical outcomes

    Universal and High-Fidelity Resolution Extending for Fluorescence Microscopy Using a Single-Training Physics-Informed Sparse Neural Network

    No full text
    As a supplement to optical super-resolution microscopy techniques, computational super-resolution methods have demonstrated remarkable results in alleviating the spatiotemporal imaging trade-off. However, they commonly suffer from low structural fidelity and universality. Therefore, we herein propose a deep-physics-informed sparsity framework designed holistically to synergize the strengths of physical imaging models (image blurring processes), prior knowledge (continuity and sparsity constraints), a back-end optimization algorithm (image deblurring), and deep learning (an unsupervised neural network). Owing to the utilization of a multipronged learning strategy, the trained network can be applied to a variety of imaging modalities and samples to enhance the physical resolution by a factor of at least 1.67 without requiring additional training or parameter tuning. Given the advantages of high accessibility and universality, the proposed deep-physics-informed sparsity method will considerably enhance existing optical and computational imaging techniques and have a wide range of applications in biomedical research
    corecore