49,198 research outputs found
Quantum nonlocality of four-qubit entangled states
Quantum nonlocality of several four-qubit states is investigated by
constructing a new Bell inequality. These include the
Greenberger-Zeilinger-Horne (GHZ) state, W state, cluster state, and the state
that has been recently proposed in [PRL, {\bf 96}, 060502 (2006)]. The
Bell inequality is optimally violated by but not violated by the GHZ
state. The cluster state also violates the Bell inequality though not
optimally. The state can thus be discriminated from the cluster state
by using the inequality. Different aspects of four-partite entanglement are
also studied by considering the usefulness of a family of four-qubit mixed
states as resources for two-qubit teleportation. Our results generalize those
in [PRL, {\bf 72}, 797 (1994)].Comment: 13 pages, 1 figur
Evaluation of heating effects on atoms trapped in an optical trap
We solve a stochastic master equation based on the theory of Savard et al. [T. A. Savard. K. M. O'Hara, and J. E. Thomas, Phys, Rev. A 56, R1095 (1997)] for heating arising from fluctuations in the trapping laser intensity. We compare with recent experiments of Ye et al. [J. Ye, D. W. Vernooy, and H. J. Kimble, Phys. Rev. Lett. 83, 4987 (1999)], and find good agreement with the experimental measurements of the distribution of trap occupancy times. The major cause of trap loss arises from the broadening of the energy distribution of the trapped atom, rather than the mean heating rate, which is a very much smaller effect
Proper Scaling of the Anomalous Hall Effect
Working with epitaxial films of Fe, we succeeded in independent control of
different scattering processes in the anomalous Hall effect. The result
appropriately accounted for the role of phonons, thereby clearly exposing the
fundamental flaws of the standard plot of the anomalous Hall resistivity versus
longitudinal resistivity. A new scaling has been thus established that allows
an unambiguous identification of the intrinsic Berry curvature mechanism as
well as the extrinsic skew scattering and side-jump mechanisms of the anomalous
Hall effect.Comment: 5 pages, 4 figure
Real-time cavity QED with single atoms
We report the first measurement of the real-time evolution of the complex field amplitude brought on by single atom transits. We show the variation in time of both quadrature amplitudes (simultaneously recorded) of the light transmitted through the cavity, as well the resultant optical phase for a single atom transit event. In this particular measurement, the cavity and laser were both detuned by 10 MHz from the Cs resonance
Strain monitoring of tapestries: results of a three-year research project
The outcomes of an interdisciplinary research project between conservators and engineers investigating the strain experienced by different areas of a tapestry are described. Two techniques were used: full-field monitoring using digital image correlation (DIC) and point measurements using optical fibre sensors. Results showed that it is possible to quantify the global strain across a discrete area of a tapestry using DIC; optical fibre and other sensors were used to validate the DIC. Strain maps created by the DIC depict areas of high and low strain and can be overlaid on images of the tapestry, creating a useful visual tool for conservators, custodians and the general public. DIC identifies areas of high strain not obvious to the naked eye. The equipment can be used in situ in a historic house. In addition the work demonstrated the close relationship between relative humidity and strain
Growth of aligned carbon nanotubes on carbon microfibers by dc plasma-enhanced chemical vapor deposition
It is shown that unidirectionally aligned carbon nanotubes can be grown on electrically conductive network of carbon microfibers via control of buffer layer material and applied electric field during dc plasma chemical vapor deposition growth. Ni catalyst deposition on carbon microfiber produces relatively poorly aligned nanotubes with significantly varying diameters and lengths obtained. The insertion of Ti 5 nm thick underlayer between Ni catalyst layer and C microfiber substrate significantly alters the morphology of nanotubes, resulting in much better aligned, finer diameter, and longer array of nanotubes. This beneficial effect is attributed to the reduced reaction between Ni and carbon paper, as well as prevention of plasma etching of carbon paper by inserting a Ti buffer layer. Such a unidirectionally aligned nanotube structure on an open-pore conductive substrate structure may conveniently be utilized as a high-surface-area base electrodes for fuel cells, batteries, and other electrochemical and catalytic reactions
- …
