789 research outputs found
Green’s function method to the ground state properties of a two-component Bose–Einstein condensate
The elementary excitation spectrum of a two-component Bose–Einstein condensate is obtained by Green’s function method. It is found to have two branches. In the long-wave limit, the two branches of the excitation spectrum are reduced to one phonon excitation and one single-particle excitation. With the obtained excitation spectrum and the Green’s functions, the depletion of the condensate and the ground state energy have also been calculated in this paper
Aharonov-Bohm Physics with Spin II: Spin-Flip Effects in Two-dimensional Ballistic Systems
We study spin effects in the magneto-conductance of ballistic mesoscopic
systems subject to inhomogeneous magnetic fields. We present a numerical
approach to the spin-dependent Landauer conductance which generalizes recursive
Green function techniques to the case with spin. Based on this method we
address spin-flip effects in quantum transport of spin-polarized and
-unpolarized electrons through quantum wires and various two-dimensional
Aharonov-Bohm geometries. In particular, we investigate the range of validity
of a spin switch mechanism recently found which allows for controlling spins
indirectly via Aharonov-Bohm fluxes. Our numerical results are compared to a
transfer-matrix model for one-dimensional ring structures presented in the
first paper (Hentschel et al., submitted to Phys. Rev. B) of this series.Comment: 29 pages, 15 figures. Second part of a series of two article
Direct Measurements of Absolute Branching Fractions for D0 and D+ Inclusive Semimuonic Decays
By analyzing about 33 data sample collected at and around 3.773
GeV with the BES-II detector at the BEPC collider, we directly measure the
branching fractions for the neutral and charged inclusive semimuonic decays
to be and , and determine the ratio of the two branching
fractions to be
Quantum Computing and Quantum Simulation with Group-II Atoms
Recent experimental progress in controlling neutral group-II atoms for
optical clocks, and in the production of degenerate gases with group-II atoms
has given rise to novel opportunities to address challenges in quantum
computing and quantum simulation. In these systems, it is possible to encode
qubits in nuclear spin states, which are decoupled from the electronic state in
the S ground state and the long-lived P metastable state on the
clock transition. This leads to quantum computing scenarios where qubits are
stored in long lived nuclear spin states, while electronic states can be
accessed independently, for cooling of the atoms, as well as manipulation and
readout of the qubits. The high nuclear spin in some fermionic isotopes also
offers opportunities for the encoding of multiple qubits on a single atom, as
well as providing an opportunity for studying many-body physics in systems with
a high spin symmetry. Here we review recent experimental and theoretical
progress in these areas, and summarise the advantages and challenges for
quantum computing and quantum simulation with group-II atoms.Comment: 11 pages, 7 figures, review for special issue of "Quantum Information
Processing" on "Quantum Information with Neutral Particles
Measurements of the observed cross sections for exclusive light hadrons containing at , 3.650 and 3.6648 GeV
By analyzing the data sets of 17.3, 6.5 and 1.0 pb taken,
respectively, at , 3.650 and 3.6648 GeV with the BES-II
detector at the BEPC collider, we measure the observed cross sections for
, , ,
and at the three energy
points. Based on these cross sections we set the upper limits on the observed
cross sections and the branching fractions for decay into these
final states at 90% C.L..Comment: 7 pages, 2 figure
Partial wave analysis of J/\psi \to \gamma \phi \phi
Using events collected in the BESII detector, the
radiative decay is
studied. The invariant mass distribution exhibits a near-threshold
enhancement that peaks around 2.24 GeV/.
A partial wave analysis shows that the structure is dominated by a
state () with a mass of
GeV/ and a width of GeV/. The
product branching fraction is: .Comment: 11 pages, 4 figures. corrected proof for journa
Measurements of the observed cross sections for exclusive light hadron production in e^+e^- annihilation at \sqrt{s}= 3.773 and 3.650 GeV
By analyzing the data sets of 17.3 pb taken at GeV
and 6.5 pb taken at GeV with the BESII detector at the
BEPC collider, we have measured the observed cross sections for 12 exclusive
light hadron final states produced in annihilation at the two energy
points. We have also set the upper limits on the observed cross sections and
the branching fractions for decay to these final states at 90%
C.L.Comment: 8 pages, 5 figur
Search for the Rare Decays J/Psi --> Ds- e+ nu_e, J/Psi --> D- e+ nu_e, and J/Psi --> D0bar e+ e-
We report on a search for the decays J/Psi --> Ds- e+ nu_e + c.c., J/Psi -->
D- e+ nu_e + c.c., and J/Psi --> D0bar e+ e- + c.c. in a sample of 5.8 * 10^7
J/Psi events collected with the BESII detector at the BEPC. No excess of signal
above background is observed, and 90% confidence level upper limits on the
branching fractions are set: B(J/Psi --> Ds- e+ nu_e + c.c.)<4.8*10^-5, B(J/Psi
--> D- e+ nu_e + c.c.) D0bar e+ e- + c.c.)<1.1*10^-5Comment: 10 pages, 4 figure
A study of charged kappa in
Based on events collected by BESII, the decay
is studied. In the invariant mass
spectrum recoiling against the charged , the charged
particle is found as a low mass enhancement. If a Breit-Wigner function of
constant width is used to parameterize the kappa, its pole locates at MeV/. Also in this channel,
the decay is observed for the first time.
Its branching ratio is .Comment: 14 pages, 4 figure
- …