25 research outputs found
Desalination Processes’ Efficiency and Future Roadmap
For future sustainable seawater desalination, the importance of achieving better energy efficiency of the existing 19,500 commercial-scale desalination plants cannot be over emphasized. The major concern of the desalination industry is the inadequate approach to energy efficiency evaluation of diverse seawater desalination processes by omitting the grade of energy supplied. These conventional approaches would suffice if the efficacy comparison were to be conducted for the same energy input processes. The misconception of considering all derived energies as equivalent in the desalination industry has severe economic and environmental consequences. In the realms of the energy and desalination system planners, serious judgmental errors in the process selection of green installations are made unconsciously as the efficacy data are either flawed or inaccurate. Inferior efficacy technologies' implementation decisions were observed in many water-stressed countries that can burden a country's economy immediately with higher unit energy cost as well as cause more undesirable environmental effects on the surroundings. In this article, a standard primary energy-based thermodynamic framework is presented that addresses energy efficacy fairly and accurately. It shows clearly that a thermally driven process consumes 2.5-3% of standard primary energy (SPE) when combined with power plants. A standard universal performance ratio-based evaluation method has been proposed that showed all desalination processes performance varies from 10-14% of the thermodynamic limit. To achieve 2030 sustainability goals, innovative processes are required to meet 25-30% of the thermodynamic limit
Desalination Processes’ Efficiency and Future Roadmap
For future sustainable seawater desalination, the importance of achieving better energy efficiency of the existing 19,500 commercial-scale desalination plants cannot be over emphasized. The major concern of the desalination industry is the inadequate approach to energy efficiency evaluation of diverse seawater desalination processes by omitting the grade of energy supplied. These conventional approaches would suffice if the efficacy comparison were to be conducted for the same energy input processes. The misconception of considering all derived energies as equivalent in the desalination industry has severe economic and environmental consequences. In the realms of the energy and desalination system planners, serious judgmental errors in the process selection of green installations are made unconsciously as the efficacy data are either flawed or inaccurate. Inferior efficacy technologies' implementation decisions were observed in many water-stressed countries that can burden a country's economy immediately with higher unit energy cost as well as cause more undesirable environmental effects on the surroundings. In this article, a standard primary energy-based thermodynamic framework is presented that addresses energy efficacy fairly and accurately. It shows clearly that a thermally driven process consumes 2.5-3% of standard primary energy (SPE) when combined with power plants. A standard universal performance ratio-based evaluation method has been proposed that showed all desalination processes performance varies from 10-14% of the thermodynamic limit. To achieve 2030 sustainability goals, innovative processes are required to meet 25-30% of the thermodynamic limit
An innovative pressure swing adsorption cycle
Over the last century, fresh water and cooling demand have been increased tremendously due to improved living standard, industrial and economic development. The conventional air-conditioning and refrigeration processes consume 15% of total global electricity and it is expected to increase any fold due to harsh weather conditions. In terms of fresh water supplies, the current 38 billion m3 per year desalination capacity is projected to increase to 54 billion m3 per year by 2030, 40% more compared to 2016. The current business as usual trend of cooling and desalination is not sustainable due to high energy consumption and CO2 emissions. In contrast, the adsorption (AD) cycle operate at low-grade waste heat or renewable energy and produce fresh water and cooling simultaneously. The major bottleneck of conventional thermally driven AD cycle is its large foot print and capital cost due to complex packed bed arrangements. We proposed pressure swing adsorption cycle (PSAD) that can utilize low-pressure steam (2-5 bar) for regeneration using thermal vapor compressor (TVC). The proposed system has best thermodynamic synergy with CCGT plants where low-pressure bleed steam can be utilized more efficiently to produce cooling and water. In this paper, a preliminary experimental investigation on PSAD has been presented. It is successfully demonstrated that 2 bar primary steam can regenerate silica gel at less then 0.5 kPa through TVC with compression ratio 3-4 and entrainment ratio around 1-1.5. The discharge steam can be re-utilized to operate the desalination cycle, maximizing the bleed steam exergy. The proposed system will not only reduce footprint but also CAPEX and OPEX due to simple design and operation
Renewable Energy-Driven Desalination Hybrids for Sustainability
The expansion trend of current desalination processes is expected to boost brine rejection to 240 km3 and CO2 emission to 400 million tons per year by 2050. This high brine rejection and CO2 emission rates are copping COP21 goal, maintaining temperature rise below 2°C. An innovative and energy-efficient process/material is required to achieve Paris Agreement targets. Highly efficient adsorbent cycle integration is proposed with well-proven conventional desalination processes to improve energy efficiency and to reduce environmental and marine pollution. The adsorbent cycle is operated with solar or low-grade industrial waste heat, available in abundance in water stress regions. The proposed integration with membrane processes will save 99% energy and over 150% chemical rejection to sea. In case of thermally driven cycles, the proposed hybridization will improve energy efficiency to 39% and will reduce over 80% chemical rejection. This can be one solution to achieve Paris Agreement (COP21) targets for climate control that can be implemented in near future
A Novel Low-Temperature Thermal Desalination Technology Using Direct-Contact Spray Method
Due to the emerging water crisis, the global desalination capacity has been expanding exponentially in the past few decades, leading to substantial amount of primary energy consumption. Therefore, the exploration of energy-efficient desalination processes and alternative energy sources has been the subject of great research interests. The spray-assisted low-temperature desalination (SLTD) system is a novel method for desalination that enables efficient renewable energy utilization. It works on the direct-contact spray evaporation/condensation mechanism and uses only hollow chambers. The merits include enhanced heat and mass transfer, lower initial and operational costs, and reduced scaling and fouling issues. This chapter presents a study on the SLTD system driven by sensible heat sources. The working principle of the system will be introduced first. Then a thermodynamic analysis will be presented to obtain the freshwater productivity under different design and operational conditions. Additionally, the energy utilization level will be quantified to highlight the energy wastage when operating with sensible heat sources. Afterward, the system configuration will be modified to maximize the utilization of sensible heat sources and promote productivity. Finally economic viability of the modified design will be evaluated
A decentralized water/electricity cogeneration system integrating concentrated photovoltaic/thermal collectors and vacuum multi-effect membrane distillation
Cogeneration of electricity and freshwater by integrating photovoltaic/thermal collectors and desalination systems is one of the most promising methods to tackle the challenges of water and energy shortage in remote areas. This study investigates a decentralized water/electricity cogeneration system combining concentrated photovoltaic/thermal collectors and a vacuum multi-effect membrane distillation system. The merits of such a configuration include high compactness and improved thermodynamic efficiency. To evaluate the long-term production potential of the proposed system, a thermodynamic analysis is firstly conducted. Under the climatic conditions of Makkah, Saudi Arabia, the system can convert ∼70% of the solar irradiance into useful energy. The annual productivity of electricity and distilled water are 562 kWh and 5.25 m3, respectively, per m2 of the solar collector area. Electricity and water production rates are found to be impacted by hot water flowrate, feed seawater flowrate and heat storage tank dimension, while the overall exergy efficiency stabilizes at 25-27%. Based on the production rates, an economic analysis is conducted through life-cycle cost analysis. The final desalination cost is calculated to be $0.7-4.3/m3, depending on the solar collector cost and the electricity price. The derived results will enable a more in-depth understanding of the proposed solar-driven water/electricity cogeneration system
A Universal Mathematical Methodology in Characterization of Materials for Tailored Design of Porous Surfaces
Understanding adsorption phenomena is essential to optimize and customize the energy transformation in numerous industrial and environmental processes. The complex and heterogeneous structure of the adsorbent surface and the distinct interaction of adsorbent-adsorbate pairs are attributed to the diverse response of adsorption phenomena, measured by the state diagrams of adsorption uptake known as adsorption isotherms. To understand various forms of adsorption isotherms, the surface characteristics of the adsorbent surface with the heterogeneity of adsorption energy sites must be analyzed so that they can be modified for the tailored response of the material. Conventionally, such material synthesis is based on chemical recipes or post-treatment. However, if the adsorbent's surface characteristics and heterogeneity are known, then a directed change in the material structure can be planned for the desired results in the adsorption processes. In this paper, a theoretical and mathematical methodology is discussed to analyze the structure of various adsorbents in terms of the distribution of their adsorption energy sites. The change in their surface is then analyzed, which results in the tailored or customized response of the material
Simultaneous production of cooling and freshwater by an integrated indirect evaporative cooling and humidification-dehumidification desalination cycle
Cooling and freshwater represent two fundamental demands in hot and arid regions. This paper reports the integration of an indirect evaporative cooler (IEC) and a humidification-dehumidification desalination cycle (HDH) for the simultaneous production of cooling and freshwater. To take full advantage of system integration, the purge air from IEC is supplied to HDH to promote water productivity. A pilot IEC unit is firstly designed and tested to achieve the temperatures and humidity of the outlet air steams. Results reveal that the IEC unit is able to cool down the supply air to below 25 °C under different outdoor conditions, and the purge air temperature is also 5–10 ℃ lower than the intake air temperature. Employing the IEC purge air as the working air, the HDH cycle is then investigated analytically. Under the operation ranges considered, the freshwater productivity and gain-output ratio (GOR) are 25–125 L/hr and 1.6–2.5, respectively, which are higher than other HDH configurations operating under the same conditions. Finally, the performance of the combined IEC-HDH system is evaluated. The overall coefficient of performance (COP) and Second-law efficiency are found to be 2.1–2.5 and 3–26%, respectively. Further improvement of efficiency can be achieved by integrating with adsorption or vapor compression refrigeration cycles