43 research outputs found

    Oriental melon roots metabolites changing response to the pathogen of Fusarium oxysporum f. sp. melonis mediated by Trichoderma harzianum

    Get PDF
    IntroductionTrichoderma spp. is a recognized bio-control agent that promotes plant growth and enhances resistance against soil-borne diseases, especially Fusarium wilt. It is frequently suggested that there is a relationship between resistance to melon wilt and changes in soil microbiome structures in the rhizosphere with plant metabolites. However, the exact mechanism remains unclear.MethodThis study aims to investigate the effects of Trichoderma application on the metabolic pathway of oriental melon roots in response to Fusarium oxysporum f. sp. melonis in a pot experiment. The experiment consisted of three treatments, namely water-treated (CK), FOM-inoculated (KW), and Trichoderma-applied (MM) treatments, that lasted for 25 days. Ultra-performance liquid chromatography-electron spray ionization-mass spectrometry (UPLC-ESI-MS) was used to analyze the compounds in melon roots.ResultsThe results show that Trichoderma harzianum application resulted in a reduction in the severity of oriental melon Fusarium wilt. A total of 416 distinct metabolites, categorized into four groups, were detected among the 886 metabolites analyzed. Additionally, seven differential metabolites were identified as key compounds being accumulated after inoculation with Fusarium oxysporum f. sp. melonis (FOM) and Trichoderma. The mechanism by which Trichoderma enhanced melon's resistance to Fusarium wilt was primarily associated with glycolysis/gluconeogenesis, phenylpropanoid biosynthesis, flavone and flavonol biosynthesis, and the biosynthesis of cofactors pathway. In comparison with the treatments of CK and MM, the KW treatment increased the metabolites of flavone and flavonol biosynthesis, suggesting that oriental melon defended against pathogen infection by increasing flavonol biosynthesis in the KW treatment, whereas the application of Trichoderma harzianum decreased pathogen infection while also increasing the biosynthesis of glycolysis/gluconeogenesis and biosynthesis of cofactors pathway, which were related to growth. This study also aims to enhance our understanding of how melon responds to FOM infection and the mechanisms by which Trichoderma harzianum treatment improves melon resistance at the metabolic level

    Space station short-term mission planning using ontology modelling and time iteration

    No full text

    Survey of orbital dynamics and control of space rendezvous

    Get PDF
    AbstractRendezvous orbital dynamics and control (RODC) is a key technology for operating space rendezvous and docking missions. This paper surveys the studies on RODC. Firstly, the basic relative dynamics equation set is introduced and its improved versions are evaluated. Secondly, studies on rendezvous trajectory optimization are commented from three aspects: the linear rendezvous, the nonlinear two-body rendezvous, and the perturbed and constrained rendezvous. Thirdly, studies on relative navigation are briefly reviewed, and then close-range control methods including automated control, manual control, and telecontrol are analyzed. Fourthly, advances in rendezvous trajectory safety and robust analysis are surveyed, and their applications in trajectory optimization are discussed. Finally, conclusions are drawn and prospects of studies on RODC are presented

    Multisatellite Flyby Inspection Trajectory Optimization Based on Constraint Repairing

    No full text
    With the rapid development of on-orbit services and space situational awareness, there is an urgent demand for multisatellite flyby inspection (MSFI) that can obtain information about a large number of space targets with little fuel consumption in a short time. There are two kinds of constraints, namely inspection constraints (ICs) at each flyby point and transfer process constraints (TPCs) in the actual mission. Further considering the influence of discrete and continuous variables such as inspection sequence, time, and maneuver scheme, it is complex and difficult to solve MSFI. To optimize it efficiently, the task flow and the problem model are defined firstly. Then, the algorithm framework based on constraint repairing is given, which contains repair methods of the ICs and the TPCs. Finally, the proposed method is compared with the nonrepair optimization method in two numerical examples. The results indicate that when the constraints are hard to meet, it is better and more efficient than the nonrepair method

    Multiphase Trajectory Optimization of a Lunar Return Mission to an LEO Space Station

    No full text
    Lunar exploration architecture can be made more flexible and reliable with the support of a low-Earth orbit (LEO) space station. This study therefore evaluated a proposed hybrid optimization scheme to design the entire trajectory of a reusable spacecraft starting from trans-Earth injection (EI) at the perilune and ending at an LEO space station. As such a trajectory has multiple constraints and multiple dynamical models, it is divided into the trans-Earth phase, aerocapture phase, and postatmospheric phase. The optimization scheme is performed at two levels: sublevel and top level. At the sublevel, two novel pseudo rules are proposed to optimize the trans-Earth trajectory so that it satisfies the coplanar constraints of the space station. Then, in the aerocapture phase, the bank angle is optimized to satisfy the mission constraints, and in the atmospheric phase, the one-impulsive maneuver is performed and optimized to insert the spacecraft into the target space station orbit. The multiple phases are connected to each other by boundary conditions where the terminal state of the previous phase is transformed into the initial state of the following phase. At the top level, the vacuum perigee height is selected as the mission design variable based on problem characteristics analysis and a hybrid optimization scheme is conducted to minimize the total velocity increment. The simulation results demonstrate that the proposed hybrid optimization method is effective for the design of an entire trajectory with acceptable velocity cost which is less than that in the previous study. The coplanar constraints of the space station and other mission constraints in each phase are also satisfied. Furthermore, the proposed trajectory design method is shown to be applicable to a reusable spacecraft returning to an LEO space station parked in any arbitrary orbital plane

    Identification of Mechanism Stiffness of Autoeliminating Clearance for Auxiliary Bearing

    No full text
    In this article, a method for identification of equivalent stiffness was proposed based on a genetic algorithm by studying the stiffness characteristics of autoeliminating clearance auxiliary bearing devices (ACABDs) in static condition. Subsequently, the equivalent stiffness damping model and the Hertz contact theory were combined to establish the theoretical equations of the ACABD. Moreover, the linear equivalent model of the ACABD was established to eliminate the influence of contact of the revolute pair on mode shape and mode frequency of the rotor. In addition, simulations and experiments were carried out to verify the effectiveness of the genetic algorithm-based stiffness identification method. The results indicated that the relative errors between the equivalent stiffness in the X and Y directions identified by the linear equivalent model and the theoretical values were 6.22 and 7.19% respectively, demonstrating the feasibility of this identification method

    Study on the Mechanism of SO2 Poisoning of MnOx/PG for Lower Temperature SCR by Simple Washing Regeneration

    No full text
    Manganese oxide-supported palygorskite (MnOx/PG) catalysts are considered highly efficient for low-temperature SCR of NOx. However, the MnOx/PG catalyst tends to be poisoned by SO2. The effect of SO2 on activity of the SO2-pretreated poisoning catalysts under ammonia-free conditions was explored. It was determined that the MnOx/PG catalyst tends to be considerably deactivated by SO2 in the absence of ammonia and that water-washed regeneration can completely recover activity of the deactivated catalyst. Based on these results and characterizations of the catalysts, a reasonable mechanism for the deactivation of MnOx/PG catalyst by SO2 was proposed in this study. SO2 easily oxidized to SO3 on the surface of the catalyst, leading to the formation of polysulfuric acid, wrapping of the active component and blocking the micropores. The deactivation of the MnOx/PG catalyst is initially caused by the formation of polysulfuric rather than the deposition of ammonia sulfate, which occurs later
    corecore