31 research outputs found

    Molecular Drivers of Myelodysplastic Neoplasms (MDS)—Classification and Prognostic Relevance

    No full text
    Myelodysplastic neoplasms (MDS) form a broad spectrum of clonal myeloid malignancies arising from hematopoietic stem cells that are characterized by progressive and refractory cytopenia and morphological dysplasia. Recent advances in unraveling the underlying pathogenesis of MDS have led to the identification of molecular drivers and secondary genetic events. With the overall goal of classifying patients into relevant disease entities that can aid to predict clinical outcomes and make therapeutic decisions, several MDS classification models (e.g., French–American–British, World Health Organization, and International Consensus Classification) as well as prognostication models (e.g., International Prognostic Scoring system (IPSS), the revised IPSS (IPSS-R), and the molecular IPSS (IPSS-M)), have been developed. The IPSS-M is the first model that incorporates molecular data for individual genes and facilitates better prediction of clinical outcome parameters compared to older versions of this model (i.e., overall survival, disease progression, and leukemia-free survival). Comprehensive classification and accurate risk prediction largely depend on the integration of genetic mutations that drive the disease, which is crucial to improve the diagnostic work-up, guide treatment decision making, and direct novel therapeutic options. In this review, we summarize the most common cytogenetic and genomic drivers of MDS and how they impact MDS prognosis and treatment decisions

    Presence but not number of secondary type mutations influences outcome in de novo AML without MDS‐associated or recurring cytogenetic abnormalities

    No full text
    Abstract A group of gene mutations has been identified to be strongly associated with secondary acute myeloid leukemias (AML) arising from prior myeloid neoplasms. The International Consensus Classification (ICC) and proposed 5th edition of the World Health Organization (WHO) classification differ by inclusion of RUNX1. A recent study suggested that having two or more secondary mutations is associated with a particularly poor prognosis. In a study of 294 de novo AML patients, we found that patients with at least one ICC‐defined secondary mutation had shorter survival when compared to those without secondary mutations, and ICC/WHO groups of two or more mutations did not predict for worse outcomes
    corecore