24 research outputs found

    Detecting Fear-Memory-Related Genes from Neuronal scRNA-seq Data by Diverse Distributions and Bhattacharyya Distance

    No full text
    The detection of differentially expressed genes (DEGs) is one of most important computational challenges in the analysis of single-cell RNA sequencing (scRNA-seq) data. However, due to the high heterogeneity and dropout noise inherent in scRNAseq data, challenges in detecting DEGs exist when using a single distribution of gene expression levels, leaving much room to improve the precision and robustness of current DEG detection methods. Here, we propose the use of a new method, DEGman, which utilizes several possible diverse distributions in combination with Bhattacharyya distance. DEGman can automatically select the best-fitting distributions of gene expression levels, and then detect DEGs by permutation testing of Bhattacharyya distances of the selected distributions from two cell groups. Compared with several popular DEG analysis tools on both large-scale simulation data and real scRNA-seq data, DEGman shows an overall improvement in the balance of sensitivity and precision. We applied DEGman to scRNA-seq data of TRAP; Ai14 mouse neurons to detect fear-memory-related genes that are significantly differentially expressed in neurons with and without fear memory. DEGman detected well-known fear-memory-related genes and many novel candidates. Interestingly, we found 25 DEGs in common in five neuron clusters that are functionally enriched for synaptic vesicles, indicating that the coupled dynamics of synaptic vesicles across in neurons plays a critical role in remote memory formation. The proposed method leverages the advantage of the use of diverse distributions in DEG analysis, exhibiting better performance in analyzing composite scRNA-seq datasets in real applications

    Economic Scheduling Model of an Active Distribution Network Based on Chaotic Particle Swarm Optimization

    No full text
    With the continuous increase in global energy demand and growing environmental awareness, the utilization of renewable energy has become a worldwide consensus. In order to address the challenges posed by the intermittent and unpredictable nature of renewable energy in distributed power distribution networks, as well as to improve the economic and operational stability of distribution systems, this paper proposes the establishment of an active distribution network capable of accommodating renewable energy. The objective is to enhance the efficiency of new energy utilization. This study investigates optimal scheduling models for energy storage technologies and economic-operation dispatching techniques in distributed power distribution networks. Additionally, it develops a comprehensive demand response model, with real-time pricing and incentive policies aiming to minimize load peak–valley differentials. The control mechanism incorporates time-of-use pricing and integrates a chaos particle swarm algorithm for a holistic approach to solution finding. By coordinating and optimizing the control of distributed power sources, energy storage systems, and flexible loads, the active distribution network achieves minimal operational costs while meeting demand-side power requirements, striving to smooth out load curves as much as possible. Case studies demonstrate significant enhancements during off-peak periods, with an approximately 60% increase in the load power overall elevation of load factors during regular periods, as well as a reduction in grid loads during evening peak hours, with a maximum decrease of nearly 65 kW. This approach mitigates grid operational pressures and user expense, effectively enhancing the stability and economic efficiency in distribution network operations

    Design and Verification of Experimental Device for Pressurized Bubbling Absorption and Transport Characteristics in Vacuum Environment

    No full text
    To explore the dynamics of flow and heat transfer behaviors associated with bubbles during solution absorption in a vacuum environment, we present the design of an experimental setup for measuring the absorption and transport properties of bubbles in a pressurized vertical tube. The structure and operational principle of the setup are detailed. The reliability and accuracy of the system are validated through a series of experiments, including vacuum level maintenance, bubble flow verification, and energy checks. The findings reveal that the supercharging technology effectively facilitates bubble absorption under negative pressure. Over a 12 h period, the system vacuum level elevates by only 2.33%, indicating a minimal gas leakage rate of 2.4 mL/h and affirming the device’s exceptional reliability. The observed bubble formation, rise, collision, coalescence, and rupture behaviors in the experiment are consistent with previous studies on bubble flow. The maximum relative deviations of temperature and concentration at the solution and cooling water outlets are 0.08%, 0.02%, and 0.01%, respectively, validating the device’s excellent accuracy. Additionally, the energy check experiments, performed with varying solution inlet temperature and flow rate, reveal the maximum errors of 10.4 J and 12.5 J, respectively, demonstrating the device’s satisfactory accuracy. In summary, this work lays a robust experimental foundation for subsequent investigations into the transport properties and transfer mechanisms of bubble absorption in a vacuum environment

    Scaling law of correlated diffusion of colloidal particles confined to a rugged surface

    No full text
    Using optical microscopy and multiparticle tracking techniques, we investigate the correlated diffusion of colloidal particles over a rugged surface. Our findings demonstrate that the correlated diffusion caused by the hydrodynamic interactions of particles confined to energy landscapes displays a distinctive power-law behavior. The local energy landscape on the rugged surface reduces the long-range hydrodynamic interactions between colloidal particles. The energy landscape influences the strength of hydrodynamic interactions, but not their power-law form. The responding factor of the colloidal particles over the energy landscape to hydrodynamics decays exponentially with the potential energy minimum. We propose a scaling method, with which the correlated diffusion of colloidal particles over various energy landscapes can be scaled onto a master curve. The master curve characterizes the response of the particles over the energy landscape to the hydrodynamics. The scale factors used for the master curve allow for the calculation of the energy landscape. The findings provide physical insights into the confinement hydrodynamics and would be helpful for designing material surfaces and controlling the motion of particles on rough surfaces.Published versionThis work was partially supported by the Key Academic Discipline Project of China University of Mining and Technology (Grant No. 2022WLXK10), the China Scholarship Council (Grant No. 202006425022), the Basic Research Program Project of Xuzhou (Grant No. KC21020), the National Natural Science Foundation of China (Grant No. 11774417) and the Natural Science Foundation of Jiangsu Province (Grant No. BK20160238)

    Influence of Snow on the Magnitude and Seasonal Variation of the Clumping Index Retrieved from MODIS BRDF Products

    No full text
    The foliage Clumping Index (CI) is an important vegetation structure parameter that allows for the accurate separation of sunlit and shaded leaves in a canopy. The CI and its seasonality are critical for global Leaf Area Index (LAI) estimating and ecological modelling. However, the cover of snow tends to reduce the reflectance anisotropy of the vegetation canopy and thus probably influences CI estimates. In this paper, we investigate the influence of snow on the magnitude and seasonal variation of the CI retrieved from Moderate-resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) products based on field-measured CI and statistics from the global MODIS CI product. We find that the backup algorithm can effectively correct abnormally large CI values and obtain more reasonable CI retrievals than the main algorithm without any constraints in snow-covered areas. Validation indicates that the time-series CI product shows the potential in investigating the trajectories of the clumping effect in snow seasons. For evergreen forests, the clumping effect is relatively stable throughout the year; however, for deciduous vegetation types, CI values tend to display significant seasonal variations. This study suggests that the latest version of the global MODIS CI product, in which the backup algorithm is used to process the snow-covered pixels, has improved accuracy for CI retrievals in snow-covered areas and thus is probably more suitable as the input parameter for ecological and meteorological models

    Estimating Forest Canopy Height Using MODIS BRDF Data Emphasizing Typical-Angle Reflectances

    No full text
    Forest-canopy height is an important parameter for the estimation of forest biomass and terrestrial carbon flux and climate-change research at regional and global scales. Currently, various methods combining Light Detection and Ranging (LiDAR) data with various auxiliary data, particularly satellite remotely sensed reflectances, have been widely used to produce spatially continuous canopy-height products. However, current methods in use for remote sensing reflectances mainly focus on the nadir view direction, while anisotropic reflectances, which are theoretically more sensitive to the forest canopy height in the multiangle remote sensing field, have rarely been explored. Here, we attempted to examine the potential of using modeled multiangle reflectances at three typical viewing angles (i.e., from the hotspot, darkspot, and nadir directions) to estimate forest-canopy height as auxiliary data sources. First, the sensitivities of the typical angular reflectances as a function of forest canopy height were fully examined using the Extended Fourier Amplitude Sensitivity Test (EFAST) method based on the 4-scale Bidirectional Reflectance Distribution Function (BRDF) model simulations. This indicated that reflectances in the off-nadir viewing directions are generally sensitive to canopy-height variations. Then, the canopy heights were extracted from airborne Laser Vegetation Imaging Sensor (LVIS) data, which were further divided into training and validation data. Moderate Resolution Imaging Spectroradiometer (MODIS) multiangle reflectances at typical viewing angles were calculated from the MODIS BRDF parameter product (MCD43A1, version 6) as partial training-input data, based on a hotspot-adjusted, kernel-driven linear BRDF model. Subsequently, the Random Forest (RF) machine learning model was trained to acquire the relationship between the extracted canopy heights and the corresponding MODIS typical viewing reflectances. The trained model was further applied to estimate the canopy height metrics in the study areas of Howland Forest, Harvard Forest, and Bartlett Forest. Finally, the estimated canopy heights were independently validated by canopy heights extracted from the LVIS data. The results indicate that the canopy heights modeled through this method exhibit generally high accordance with the LVIS-derived canopy heights (R = 0.65−0.67; RMSE = 3.63−5.78). The results suggest that the MODIS multiangle reflectance data at typical observation angles contain important information regarding forest canopy height and can, therefore, be used to estimate forest canopy height for various ecological applications

    Potential Investigation of Linking PROSAIL with the Ross-Li BRDF Model for Vegetation Characterization

    No full text
    Methods that link different models for investigating the retrieval of canopy biophysical/structural variables have been substantially adopted in the remote sensing community. To retrieve global biophysical parameters from multiangle data, the kernel-driven bidirectional reflectance distribution function (BRDF) model has been widely applied to satellite multiangle observations to model (interpolate/extrapolate) the bidirectional reflectance factor (BRF) in an arbitrary direction of viewing and solar geometries. Such modeled BRFs, as an essential information source, are then input into an inversion procedure that is devised through a large number of simulation analyses from some widely used physical models that can generalize such an inversion relationship between the BRFs (or their simple algebraic composite) and the biophysical/structural parameter. Therefore, evaluation of such a link between physical models and kernel-driven models contributes to the development of such inversion procedures to accurately retrieve vegetation properties, particularly based on the operational global BRDF parameters derived from satellite multiangle observations (e.g., MODIS). In this study, the main objective is to investigate the potential for linking a popular physical model (PROSAIL) with the widely used kernel-driven Ross-Li models. To do this, the BRFs and albedo are generated by the physical PROSAIL in a forward model, and then the simulated BRFs are input into the kernel-driven BRDF model for retrieval of the BRFs and albedo in the same viewing and solar geometries. To further strengthen such an investigation, a variety of field-measured multiangle reflectances have also been used to investigate the potential for linking these two models. For simulated BRFs generated by the PROSAIL model at 659 and 865 nm, the two models are generally comparable to each other, and the resultant root mean square errors (RMSEs) are 0.0092 and 0.0355, respectively, although some discrepancy in the simulated BRFs can be found at large average leaf angle (ALA) values. Unsurprisingly, albedos generated by the method are quite consistent, and 99.98% and 97.99% of the simulated white sky albedo (WSA) has a divergence less than 0.02. For the field measurements, the kernel-driven model presents somewhat better model-observation congruence than the PROSAIL model. The results show that these models have an overall good consistency for both field-measured and model-simulated BRFs. Therefore, there is potential for linking these two models for looking into the retrieval of canopy biophysical/structural variables through a simulation method, particularly from the current archive of the global routine MODIS BRDF parameters that were produced by the kernel-driven BRDF model; however, erectophile vegetation must be further examined

    Table_1_Genetic variation within the pri-let-7f-2 in the X chromosome predicting stroke risk in a Chinese Han population from Liaoning, China: From a case-control study to a new predictive nomogram.DOCX

    No full text
    Background and objectivesStroke is the most common cause of disability and the second cause of death worldwide. Therefore, there is a need to identify patients at risk of developing stroke. This case-control study aimed to create and verify a gender-specific genetic signature-based nomogram to facilitate the prediction of ischemic stroke (IS) risk using only easily available clinical variables.Materials and methodsA total of 1,803 IS patients and 1,456 healthy controls from the Liaoning province in China (Han population) were included which randomly divided into training cohort (70%) and validation cohort (30%) using the sample function in R software. The distribution of the pri-let-7f-2 rs17276588 variant genotype was analyzed. Following genotyping analysis, statistical analysis was used to identify relevant features. The features identified from the multivariate logistic regression, the least absolute shrinkage and selection operator (LASSO) regression, and univariate regression were used to create a multivariate prediction nomogram model. A calibration curve was used to determine the discrimination accuracy of the model in the training and validation cohorts. External validity was also performed.ResultsThe genotyping analysis identified the A allele as a potential risk factor for IS in both men and women. The nomogram identified the rs17276588 variant genotype and several clinical parameters, including age, diabetes mellitus, body mass index (BMI), hypertension, history of alcohol use, history of smoking, and hyperlipidemia as risk factors for developing IS. The calibration curves for the male and female models showed good consistency and applicability.ConclusionThe pri-let-7f-2 rs17276588 variant genotype is highly linked to the incidence of IS in the northern Chinese Han population. The nomogram we devised, which combines genetic fingerprints and clinical data, has a lot of promise for predicting the risk of IS within the Chinese Han population.</p

    Evaluation of the Snow Albedo Retrieved from the Snow Kernel Improved the Ross-Roujean BRDF Model

    No full text
    The original kernel-driven bidirectional reflectance distribution function (BRDF) models were developed based on soil-vegetation systems. To further improve the ability of the models to characterize the snow surface scattering properties, a snow kernel was derived from the asymptotic radiative transfer (ART) model and used in the kernel-driven BRDF model framework. However, there is a need to further evaluate the influence of using this snow kernel to improve the original kernel-driven models in snow albedo retrieval applications. The aim of this study is to perform such an evaluation using a variety of snow BRDF data. The RossThick-Roujean (RTR) model is used as a framework for taking in the new snow kernel (hereafter named the RTS model) since the Roujean geometric-optical (GO) kernel captures a neglectable hotspot effect and represents a more prominent dome-shaped BRDF, especially at a small solar zenith angle (SZA). We obtained the following results: (1) The RTR model has difficulties in reconstructing the snow BRDF shape, especially at large SZAs, which tends to underestimate the reflectance in the forward direction and overestimate reflectance in the backward direction for various data sources. In comparison, the RTS model performs very well in fitting snow BRDF data and shows high accuracy for all data. (2) The RTR model retrieved snow albedos at SZAs = 30&deg;&ndash;70&deg; are underestimated by 0.71% and 0.69% in the red and near-infrared (NIR) bands, respectively, compared with the simulation results of the bicontinuous photon tracking (bic-PT) model, which serve as &ldquo;real&rdquo; values. However, the albedo retrieved by the RTS model is significantly improved and generally agrees well with the simulation results of the bic-PT model, although the improved model still somewhat underestimates the albedo by 0.01% in the red band and overestimates the albedo by 0.05% in the NIR band, respectively, at SZAs = 30&deg;&ndash;70&deg;, which may be negligible. (3) The albedo derived by these two models shows a high correlation (R2 &gt; 0.9) between the field-measured and Polarization and Directionality of the Earth&rsquo;s Reflectances (POLDER) data, especially for the black-sky albedo. However, the albedo derived using the RTR model is significantly underestimated compared with the RTS model. The RTR model underestimates the black-sky albedo (white-sky albedo) retrievals by 0.62% (1.51%) and 0.93% (2.08%) in the red and NIR bands, respectively, for the field-measured data. The shortwave black-sky and white-sky albedos derived using the RTR model for the POLDER data are underestimated by 1.43% and 1.54%, respectively, compared with the RTS model. These results indicate that the snow kernel in the kernel-driven BRDF model frame is more accurate in snow albedo retrievals and has the potential for application in the field of the regional and global energy budget
    corecore