5 research outputs found

    Papain-Based Solubilization of Decellularized Extracellular Matrix for the Preparation of Bioactive, Thermosensitive Pregels

    Get PDF
    Solubilized, gel-forming decellularized extracellular matrix (dECM) is used in a wide range of basic and translational research and due to its inherent bioactivity can promote structural and functional tissue remodeling. The animal-derived protease pepsin has become the standard proteolytic enzyme for the solubilization of almost all types of collagen-based dECM. In this study, pepsin was compared with papain, α-amylase, and collagenase for their potential to solubilize porcine liver dECM. Maximum preservation of bioactive components and native dECM properties was used as a decisive criterion for further application of the enzymes, with emphasis on minimal destruction of the protein structure and maintained capacity for physical thermogelation at neutral pH. The solubilized dECM digests, and/or their physically gelled hydrogels were characterized for their rheological properties, gelation kinetics, GAG content, proteomic composition, and growth factor profile. This study highlights papain as a plant-derived enzyme that can serve as a cost-effective alternative to animal-derived pepsin for the efficient solubilization of dECM. The resulting homogeneous papain-digested dECM preserved its thermally triggered gelation properties similar to pepsin digests, and the corresponding dECM hydrogels demonstrated their enhanced bioadhesiveness in single-cell force spectroscopy experiments with fibroblasts. The viability and proliferation of human HepaRG cells on dECM gels were similar to those on pure rat tail collagen type I gels. Papain is not only highly effective and economically attractive for dECM solubilization but also particularly interesting when digesting human-tissue-derived dECM for regenerative applications, where animal-derived materials are to be avoided

    Clathrin-Independent Killing of Intracellular Mycobacteria and Biofilm Disruptions Using Synthetic Antimicrobial Polymers

    No full text
    Current membrane targeting antimicrobials fail to target mycobacteria due to their hydrophobic membrane structure, ability to form drug-resistant biofilms, and their natural intracellular habitat within the confines of macrophages. In this work, we describe engineering of synthetic antimicrobial polymers (SAMPs) derived from biocompatible polyamides that can target drug-sensitive and drug-resistant mycobacteria with high selectivity. Structure–activity relationship studies revealed that reduced hydrophobicity of cationic pendants induces enhanced and selective permeabilization of mycobacterial membranes. The least hydrophobic SAMP (<b>TAC1</b>) was found to be the most active with maximum specificity toward mycobacteria over E. coli, S. aureus, and mammalian cells. Membrane perturbation studies, scanning electron microscopy, and colony PCR confirmed the ability of <b>TAC1</b> to induce membrane lysis and to bind to the genomic material of mycobacteria, thereby inducing mycobacterial cell death. <b>TAC1</b> was most effective in perfusing and disrupting the mycobacterial biofilms and was also able to kill the intracellular mycobacteria effectively without inducing any toxicity to mammalian cells. Cellular uptake studies revealed clathrin independent uptake of <b>TAC1</b>, thereby allowing it to escape hydrolytic lysosomal degradation and effectively kill the intracellular bacteria. Therefore, this manuscript presents the design and selective antimycobacterial nature of polyamide polymers with charged hydrophobic pendants that have ability to disrupt the biofilms and kill intracellular mycobacteria

    Cell Permeating Nano-Complexes of Amphiphilic Polyelectrolytes Enhance Solubility, Stability, and Anti-Cancer Efficacy of Curcumin

    No full text
    Many hydrophobic drugs encounter severe bioavailability issues owing to their low aqueous solubility and limited cellular uptake. We have designed a series of amphiphilic polyaspartamide polyelectrolytes (PEs) that solubilize such hydrophobic drugs in aqueous medium and enhance their cellular uptake. These PEs were synthesized through controlled (∼20 mol %) derivatization of polysuccinimide (PSI) precursor polymer with hydrophobic amines (of varying alkyl chain lengths, <i>viz</i>. hexyl, octyl, dodecyl, and oleyl), while the remaining succinimide residues of PSI were opened using a protonable and hydrophilic amine, 2-(2-amino-ethyl amino) ethanol (AE). Curcumin (Cur) was employed as a representative hydrophobic drug to explore the drug-delivery potential of the resulting PEs. Unprecedented enhancement in the aqueous solubility of Cur was achieved by employing these PEs through a rather simple protocol. In the case of PEs containing oleyl/dodecyl residues, up to >65000× increment in the solubility of Cur in aqueous medium could be achieved without requiring any organic solvent at all. The resulting suspensions were physically and chemically stable for at least 2 weeks. Stable nanosized polyelectrolyte complexes (PECs) with average hydrodynamic diameters (D<sub>H</sub>) of 150–170 nm (without Cur) and 220–270 nm (after Cur loading) were obtained by using submolar sodium polyaspartate (SPA) counter polyelectrolyte. The zeta potential of these PECs ranged from +36 to +43 mV. The PEC-formation significantly improved the cytocompatibility of the PEs while affording reconstitutable nanoformulations having up to 40 wt % drug-loading. The Cur-loaded PECs were readily internalized by mammalian cells (HEK-293T, MDA-MB-231, and U2OS), majorly through clathrin-mediated endocytosis (CME). Cellular uptake of Cur was directly correlated with the length of the alkyl chain present in the PECs. Further, the PECs significantly improved nuclear transport of Cur in cancer cells, resulting in their death by apoptosis. Noncancerous cells were completely unaffected under this treatment

    Papain-Based Solubilization of Decellularized Extracellular Matrix for the Preparation of Bioactive, Thermosensitive Pregels

    No full text
    Solubilized, gel-forming decellularized extracellular matrix (dECM) is used in a wide range of basic and translational research and due to its inherent bioactivity can promote structural and functional tissue remodeling. The animal-derived protease pepsin has become the standard proteolytic enzyme for the solubilization of almost all types of collagen-based dECM. In this study, pepsin was compared with papain, α-amylase, and collagenase for their potential to solubilize porcine liver dECM. Maximum preservation of bioactive components and native dECM properties was used as a decisive criterion for further application of the enzymes, with emphasis on minimal destruction of the protein structure and maintained capacity for physical thermogelation at neutral pH. The solubilized dECM digests, and/or their physically gelled hydrogels were characterized for their rheological properties, gelation kinetics, GAG content, proteomic composition, and growth factor profile. This study highlights papain as a plant-derived enzyme that can serve as a cost-effective alternative to animal-derived pepsin for the efficient solubilization of dECM. The resulting homogeneous papain-digested dECM preserved its thermally triggered gelation properties similar to pepsin digests, and the corresponding dECM hydrogels demonstrated their enhanced bioadhesiveness in single-cell force spectroscopy experiments with fibroblasts. The viability and proliferation of human HepaRG cells on dECM gels were similar to those on pure rat tail collagen type I gels. Papain is not only highly effective and economically attractive for dECM solubilization but also particularly interesting when digesting human-tissue-derived dECM for regenerative applications, where animal-derived materials are to be avoided
    corecore