71 research outputs found
A Weighted Average of Sparse Representations is Better than the Sparsest One Alone
Cleaning of noise from signals is a classical and long-studied problem in signal
processing. Algorithms for this task necessarily rely on an a-priori knowledge about the signal characteristics, along with information about the noise properties. For signals that admit sparse representations over a known dictionary, a commonly used denoising technique is to seek the sparsest representation that synthesizes a signal close enough to the corrupted one. As this problem is too complex in general, approximation methods, such as greedy pursuit algorithms, are often employed.
In this line of reasoning, we are led to believe that detection of the sparsest representation is key in the success of the denoising goal. Does this mean that other competitive and slightly inferior sparse representations are meaningless? Suppose we are served with a group of competing sparse representations, each claiming to explain the signal differently. Can those be fused somehow to lead to a better result? Surprisingly, the answer to this question is positive; merging these representations can form a more accurate, yet dense, estimate of the original signal even when the latter is known to be sparse.
In this paper we demonstrate this behavior, propose a practical way to generate
such a collection of representations by randomizing the Orthogonal Matching Pursuit (OMP) algorithm, and produce a clear analytical justification for the superiority of the associated Randomized OMP (RandOMP) algorithm. We show that while the Maximum a-posterior Probability (MAP) estimator aims to find and use the sparsest representation, the Minimum Mean-Squared-Error (MMSE) estimator leads to a fusion of representations to form its result. Thus, working with an appropriate mixture of candidate representations, we are surpassing the MAP and tending towards the MMSE estimate, and thereby getting a far more accurate estimation, especially at medium and low SNR
On MMSE and MAP Denoising Under Sparse Representation Modeling Over a Unitary Dictionary
Among the many ways to model signals, a recent approach that draws
considerable attention is sparse representation modeling. In this model, the
signal is assumed to be generated as a random linear combination of a few atoms
from a pre-specified dictionary. In this work we analyze two Bayesian denoising
algorithms -- the Maximum-Aposteriori Probability (MAP) and the
Minimum-Mean-Squared-Error (MMSE) estimators, under the assumption that the
dictionary is unitary. It is well known that both these estimators lead to a
scalar shrinkage on the transformed coefficients, albeit with a different
response curve. In this work we start by deriving closed-form expressions for
these shrinkage curves and then analyze their performance. Upper bounds on the
MAP and the MMSE estimation errors are derived. We tie these to the error
obtained by a so-called oracle estimator, where the support is given,
establishing a worst-case gain-factor between the MAP/MMSE estimation errors
and the oracle's performance. These denoising algorithms are demonstrated on
synthetic signals and on true data (images).Comment: 29 pages, 10 figure
Recommended from our members
Implementation and Performance of a Grand Challenge 3d Quasi-Geostrophic Multi-Grid Code on the Cray T3D and IBM SP2 ; CU-CS-771-95
Clutter Mitigation in Echocardiography Using Sparse Signal Separation
In ultrasound imaging, clutter artifacts degrade images and may cause inaccurate
diagnosis. In this paper, we apply a method called Morphological Component Analysis (MCA) for sparse signal separation with the objective of reducing such clutter artifacts. The MCA approach assumes that the two signals in the additive mix have each a
sparse representation under some dictionary of atoms (a matrix), and separation is achieved by finding these sparse representations. In our work, an adaptive approach is used for learning the dictionary from the echo data. MCA is compared to Singular Value Filtering (SVF), a Principal Component Analysis- (PCA-) based filtering technique, and to a high-pass Finite Impulse Response (FIR) filter. Each filter is applied to a simulated hypoechoic lesion sequence, as well as experimental cardiac ultrasound data. MCA is demonstrated in both cases to outperform the FIR filter and obtain results comparable to the SVF method in terms of contrast-to-noise ratio (CNR). Furthermore, MCA shows a lower impact on tissue sections while removing the clutter artifacts. In
experimental heart data, MCA obtains in our experiments clutter mitigation with an average CNR improvement of 1.33 dB
- …