22 research outputs found

    Local amplification of glucocorticoids in the aging brain and impaired spatial memory

    Get PDF
    The hippocampus is a prime target for glucocorticoids (GCs) and a brain structure particularly vulnerable to ageing. Prolonged exposure to excess GCs compromises hippocampal electrophysiology, structure and function. Blood GC levels tend to increase with ageing and correlate with impaired spatial memory in ageing rodents and humans. The magnitude of GC action within tissues depends not only on levels of steroid hormone that enter the cells from the periphery and the density of intracellular receptors but also on the local metabolism of GCs by 11ß-hydroxysteroid dehydrogenases (11ß-HSD). The predominant isozyme in the adult brain, 11ß-HSD1, locally regenerates active GCs from inert 11-keto forms thus amplifying GC levels within specific target cells including in the hippocampus and cortex. Ageing associates with elevated hippocampal and neocortical 11ß-HSD1 and impaired spatial learning while deficiency of 11ß-HSD1 in knockout mice prevents the emergence of cognitive decline with age. Furthermore, short-term pharmacological inhibition of 11ß-HSD1 in already aged mice reverses spatial memory impairments. Here, we review research findings that support a key role for GCs with special emphasis on their intracellular regulation by 11ß-HSD1 in the emergence of spatial memory deficits with ageing, and discuss the use of 11ß-HSD1 inhibitors as a promising novel treatment in ameliorating/improving age-related memory impairments

    11 beta-Hydroxysteroid Dehydrogenase Type 1 Deficiency Prevents Memory Deficits with Aging by Switching from Glucocorticoid Receptor to Mineralocorticoid Receptor-Mediated Cognitive Control

    Get PDF
    Local brain amplification of glucocorticoids (GCs) by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) plays a pivotal role in age-related memory deficits. 11β-HSD1 deficient mice are protected from spatial memory impairments with aging, but the underlying mechanisms are unknown. To determine which brain receptors [high-affinity mineralocorticoid receptors (MRs) or low-affinity glucocorticoid receptors (GRs)] are involved, spatial memory was measured in aged 11β-HSD1(−/−) mice before and during intracerebroventricular infusion (10 d) of spironolactone (MR antagonist) or RU486 (GR antagonist). Aged C57BL/6J control mice showed impaired spatial memory in the Y-maze; this improved with GR blockade, while MR blockade had no effect. In contrast, aged 11β-HSD1(−/−) mice showed intact spatial memory that became impaired with MR blockade, but not GR blockade. Hippocampal MR and GR mRNA expression and plasma corticosterone levels were not significantly altered with spironolactone or RU486 in either genotype. These data support the notion that 11β-HSD1 deficiency in aging mice leads to lower intracellular GC concentrations in brain, particularly in the hippocampus, which activate predominantly MRs to enhance memory, while in aging C57BL/6J controls, the increased intracellular GCs saturate MRs and activate predominantly GRs, thus impairing memory, an effect reversed by GR blockade

    Cognitive and disease-modifying effects of 11ß-hydroxysteroid dehydrogenase type 1 inhibition in male Tg2576 mice, a model of Alzheimer's disease

    Get PDF
    Chronic exposure to elevated levels of glucocorticoids has been linked to age-related cognitive decline and may play a role in Alzheimer's disease. In the brain, 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) amplifies intracellular glucocorticoid levels. We show that short-term treatment of aged, cognitively impaired C57BL/6 mice with the potent and selective 11β-HSD1 inhibitor UE2316 improves memory, including after intracerebroventricular drug administration to the central nervous system alone. In the Tg2576 mouse model of Alzheimer's disease, UE2316 treatment of mice aged 14 months for 4 weeks also decreased the number of β-amyloid (Aβ) plaques in the cerebral cortex, associated with a selective increase in local insulin-degrading enzyme (involved in Aβ breakdown and known to be glucocorticoid regulated). Chronic treatment of young Tg2576 mice with UE2316 for up to 13 months prevented cognitive decline but did not prevent Aβ plaque formation. We conclude that reducing glucocorticoid regeneration in the brain improves cognition independently of reduced Aβ plaque pathology and that 11β-HSD1 inhibitors have potential as cognitive enhancers in age-associated memory impairment and Alzheimer's dementia

    Diurnal and stress-induced intra-hippocampal corticosterone rise attenuated in 11β-HSD1-deficient mice:a microdialysis study in young and aged mice

    Get PDF
    11β‐Hydroxysteroid dehydrogenase type 1 (11β‐HSD1) locally regenerates active glucocorticoids from their inert forms thereby amplifying intracellular levels within target tissues including the brain. We previously showed greater increases in intra‐hippocampal corticosterone (CORT) levels upon Y‐maze testing in aged wild‐type than in 11β‐HSD1(−/−) mice coinciding with impaired and intact spatial memory, respectively. Here we examined whether ageing influences 11β‐HSD1 regulation of CORT in the dorsal hippocampus under basal conditions during the diurnal cycle and following stress. Intra‐hippocampal CORT levels measured by in vivo microdialysis in freely behaving wild‐type mice displayed a diurnal variation with peak levels in the evening that were significantly elevated with ageing. In contrast, the diurnal rise in intra‐hippocampal CORT levels was greatly diminished in 11β‐HSD1(−/−) mice and there was no rise with ageing; basal intra‐hippocampal CORT levels were similar to wild‐type controls. Furthermore, a short (3 min) swim stress induced a longer lasting increase in intra‐hippocampal CORT levels in wild‐type mice than in 11β‐HSD1(−/−) mice despite no genotypic differences in elevation of plasma CORT. These data indicate that 11β‐HSD1 activity contributes substantially to diurnal and stress‐induced increases in hippocampal CORT levels. This contribution is even greater with ageing. Thus, 11β‐HSD1 inhibition may be an attractive target for treating cognitive impairments associated with stress or ageing

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)

    Glucocorticoids and the ageing hippocampus

    No full text
    Approximately 30% of human and mammalian populations develop cognitive impairments with ageing. Many of these impairments have been linked to dysfunction of the hippocampus, a well studied area of the medial-temporal lobe, which is involved in episodic memory and control of the hypothalamo-pituitary-adrenal stress axis and, thus, of glucocorticoid secretion. This paper reviews the growing body of studies which explore a possible relationship between lifetime exposure to glucocorticoids and hippocampal impairment. There is now strong evidence which associates hypercortisolemia in aged men with later cognitive dysfunction and this complements a wealth of rodent and other human data. We conclude with a discussion of possible pharmacological and behavioural interventions

    Genome-wide association and functional studies identify a role for matrix Gla protein in osteoarthritis of the hand

    No full text
    Objective Osteoarthritis (OA) is the most common form of arthritis and the leading cause of disability in the elderly. Of all the joints, genetic predisposition is strongest for OA of the hand; however, only few genetic risk loci for hand OA have been identified. Our aim was to identify novel genes associated with hand OA and examine the underlying mechanism. Methods We performed a genome-wide association study of a quantitative measure of hand OA in 12 784 individuals (discovery: 8743, replication: 4011). Genome-wide significant signals were followed up by analysing gene and allele-specific expression in a RNA sequencing dataset (n=96) of human articular cartilage. Results We found two significantly associated loci in the discovery set: at chr12 (p=3.5 × 10 -10) near the matrix Gla protein (MGP) gene and at chr12 (p=6.1×10 -9) near the CCDC91 gene. The DNA variant near
    corecore