16 research outputs found

    MITIGATOR: GNSS-Based System for Remote Sensing of Ionospheric Absolute Total Electron Content

    No full text
    Monitoring the Earth’s ionosphere is an important, fundamental and applied problem. Global Navigation Satellite Systems (GNSS) provide a way of measuring the ionospheric total electron content (TEC), but real-time single-station absolute TEC measurements are still a problem. This study describes a single-station system to measure the absolute TEC, based on the GNSS–MITIGATOR (MonITorInG the Absolute TOtal electRon content) system. The latter enables real-time measurements for the absolute TEC and its derivatives in time and in space to be obtained. The system is implemented by using JAVAD receivers. The convergence time and the run-mode retention time is ~8 h. We provide potential methods for using the system to estimate the critical frequency of the ionosphere, foF2, at oblique paths in the Siberian region. The developed tool could be useful for supporting real-time multi-instrumental ionosphere monitoring or for compensating for the ionospheric errors of radio equipment

    Network Theory to Reveal Ionospheric Anomalies over North America and Australia

    No full text
    There are significant challenges to model the ionosphere due to different anomalies, especially under the increasing requirements for precision level. We used network theory to construct an ionospheric network analysis based on the data of global ionospheric maps for the period from 1998 to 2015. The network approach revealed different domains in the ionosphere. Besides the well-known equatorial anomaly, we revealed two more essential areas with “anomalous” behavior in the total electron content (TEC). Both anomalies are located at mid-latitudes: the first over most of North America, and the second one over the southeast part of Australia and the adjacent part of the Indian Ocean. The revealed areas partly coincide with the winter anomaly regions. Our results demonstrate that complex ionosphere/magnetic field/neutral atmosphere interaction can result in atypical ionosphere dynamics in huge areas

    Auroral Oval Boundary Dynamics on the Nature of Geomagnetic Storm

    No full text
    During emergency events, we could significantly depend on the stable operation of radio communication, navigation, and radars. The ionosphere, especially its auroral regions, significantly influences radio systems, which is why scientists and engineers create systems to monitor these regions. Using data from the global GNSS network, we analyzed the 10 strongest magnetic storms of solar cycle 24: five coronal mass ejection-driven (CME-driven) and five high-speed stream-driven (HSS-driven) storms. The analysis was based on the calculation of the standard deviation of the total electron content (TEC) derivative (rate of TEC index, ROTI). Under all the storms, the ROTI featured similar dynamics: the average ROTI reaches the highest values during the main phase, and the higher the intensity is, the more intense and equatorward the average ROTI registered. The highest cross-correlations are observed with a lag of 1 h, between the IMF z-component Bz and the magnetic latitude where the highest ROTI values appear. The auroral electrojet (SME index) shows the highest impact on the ROTI dynamics. An increase in the space weather indices (in absolute value) is accompanied by a decrease in the latitude where the maximal ROTI occurs. We found that the peculiarities of a storm affect the ROTI dynamics: all the CME-driven storms feature a high cross-correlation (>0.75) between the IMF z-component Bz and the magnetic latitude where the highest ROTI appears, while the HSS-driven storms feature a lower cross-correlation (<0.75) between them. The difference in duration of similar (by maximal values of geomagnetic indices) HSS- and CME-driven storms could produce differences in the highest ROTI values. Correlations show that compared to HSS-driven storms, CME-driven ones more directly impact the ROTI values and locations of regions with a high ROTI

    Auroral Oval Boundary Dynamics on the Nature of Geomagnetic Storm

    No full text
    During emergency events, we could significantly depend on the stable operation of radio communication, navigation, and radars. The ionosphere, especially its auroral regions, significantly influences radio systems, which is why scientists and engineers create systems to monitor these regions. Using data from the global GNSS network, we analyzed the 10 strongest magnetic storms of solar cycle 24: five coronal mass ejection-driven (CME-driven) and five high-speed stream-driven (HSS-driven) storms. The analysis was based on the calculation of the standard deviation of the total electron content (TEC) derivative (rate of TEC index, ROTI). Under all the storms, the ROTI featured similar dynamics: the average ROTI reaches the highest values during the main phase, and the higher the intensity is, the more intense and equatorward the average ROTI registered. The highest cross-correlations are observed with a lag of 1 h, between the IMF z-component Bz and the magnetic latitude where the highest ROTI values appear. The auroral electrojet (SME index) shows the highest impact on the ROTI dynamics. An increase in the space weather indices (in absolute value) is accompanied by a decrease in the latitude where the maximal ROTI occurs. We found that the peculiarities of a storm affect the ROTI dynamics: all the CME-driven storms feature a high cross-correlation (>0.75) between the IMF z-component Bz and the magnetic latitude where the highest ROTI appears, while the HSS-driven storms feature a lower cross-correlation (<0.75) between them. The difference in duration of similar (by maximal values of geomagnetic indices) HSS- and CME-driven storms could produce differences in the highest ROTI values. Correlations show that compared to HSS-driven storms, CME-driven ones more directly impact the ROTI values and locations of regions with a high ROTI

    Advances in GNSS Positioning and GNSS Remote Sensing

    No full text
    Scientists and engineers use data utilize global navigation satellite systems (GNSSs) for a multitude of tasks: autonomous navigation, transport monitoring, construction, GNSS reflectometry, GNSS ionosphere monitoring, etc [...

    Winter anomaly in

    No full text
    For the first time, by using a regression procedure, we analyzed the solar activity dependence of the winter anomaly intensity in the ionospheric F2-layer peak electron density (Nm F2) and in the Total Electron Content (TEC) on a global scale. We used the data from global ionospheric maps for 1998–2015, from GPS radio occultation observations with COSMIC, CHAMP, and GRACE satellites for 2001–2015, and ground-based ionosonde data. The fundamental features of the winter anomaly in Nm F2 and in TEC (spatial distribution and solar activity dependence) are similar for these parameters. We determined the regions, where the winter anomaly may be observed in principle, and the solar activity level, at which the winter anomaly may be recorded in different sectors. A growth in geomagnetic disturbance or in the solar activity level is shown to facilitate the winter anomaly intensity increase. Longitudinal variations in the winter anomaly intensity do not conform partly to the generally accepted Rishbeth theory. We consider the obtained results in the context of spatial and solar cycle variations in O/N2 ratio and thermospheric meridional wind. Additionally, we briefly discuss different definitions of the winter anomaly

    Features of Winter Stratosphere Small-Scale Disturbance during Sudden Stratospheric Warmings

    No full text
    We analyzed the characteristics of small-scale wave disturbances emerging during the evolution and transformation of the jet stream (JS) in the winter stratosphere and the lower mesosphere of the northern hemisphere, including the periods of sudden stratospheric warming (SSW) events. Continuous generation of small-scale wave disturbances is shown to occur over quiet geomagnetic winter periods in the region of a steady jet stream in the strato–mesosphere. We studied spatial spectra for the vertical velocity variations, determined by the parameters of emerging wave disturbances. The greatest intensities of disturbances are recorded in the regions corresponding to the high velocities of the JS (from 100 m/s and higher). In the northern hemisphere, those latitudes encompass ~40–60° N. When a steady jet stream forms, the horizontal length and periods of the most intensive wavelike disturbances are shown to vary within 300–1000 km and 50–150 min correspondingly (which match the characteristic scales of internal gravity waves, or IGWs). During the SSW prewarming stage, the JS transforms substantially. Over the same periods, a disturbance intensification is recorded, as well as the emergence of larger-scale disturbances with 3000–5000-km horizontal wavelengths, and even higher. After the SSW peak and during the stratosphere circulation recovery, the velocity in the JS substantially decreases and an essential reduction in wave-disturbance generation occurs. There are decreases in the average amplitude values (by factors of 1.8–6.7). The strongest amplitude drop was observed for short waves (zonal wavelength λU = 300 km). The maximum attenuation for all wavelengths was observed for the strongest 2008/2009 winter SSW. For the analyzed events, such attenuation was observed for up to about a month after the SSW peak. Thus, JS disruption during major SSWs leads to deactivating the source for generating small-scale wave disturbances in the stratosphere. This may affect disturbances in higher atmospheric layers. The results obtained are the experimental evidence that JS itself is the primary source for the generation of IGWs in the stratosphere–lower mesosphere

    Winter anomaly in NmF2 and TEC: when and where it can occur

    No full text
    For the first time, by using a regression procedure, we analyzed the solar activity dependence of the winter anomaly intensity in the ionospheric F2-layer peak electron density (Nm F2) and in the Total Electron Content (TEC) on a global scale. We used the data from global ionospheric maps for 1998–2015, from GPS radio occultation observations with COSMIC, CHAMP, and GRACE satellites for 2001–2015, and ground-based ionosonde data. The fundamental features of the winter anomaly in Nm F2 and in TEC (spatial distribution and solar activity dependence) are similar for these parameters. We determined the regions, where the winter anomaly may be observed in principle, and the solar activity level, at which the winter anomaly may be recorded in different sectors. A growth in geomagnetic disturbance or in the solar activity level is shown to facilitate the winter anomaly intensity increase. Longitudinal variations in the winter anomaly intensity do not conform partly to the generally accepted Rishbeth theory. We consider the obtained results in the context of spatial and solar cycle variations in O/N2 ratio and thermospheric meridional wind. Additionally, we briefly discuss different definitions of the winter anomaly

    Galileo E5 AltBOC Signals: Application for Single-Frequency Total Electron Content Estimations

    No full text
    Global navigation satellite system signals are known to be an efficient tool to monitor the Earth ionosphere. We suggest Galileo E5 AltBOC phase and pseudorange observables—a single-frequency combination—to estimate the ionospheric total electron content (TEC). We performed a one-month campaign in September 2020 to compare the noise level for different TEC estimations based on single-frequency and dual-frequency data. Unlike GPS, GLONASS, or Galileo E5a and E5b single-frequency TEC estimations (involving signals with binary and quadrature phase-shift keying, such as BPSK and QPSK, or binary offset carrier (BOC) modulation), an extra wideband Galileo E5 AltBOC signal provided the smallest noise level, comparable to that of dual-frequency GPS. For elevation higher than 60 degrees, the 100 s root-mean-square (RMS) of TEC, an estimated TEC noise proxy, was as follows for different signals: ~0.05 TECU for Galileo E5 AltBOC, 0.09 TECU for GPS L5, ~0.1TECU for Galileo E5a/E5b BPSK, and 0.85 TECU for Galileo E1 CBOC. Dual-frequency phase combinations provided RMS values of 0.03 TECU for Galileo E1/E5, 0.03 and 0.07 TECU for GPS L1/L2 and L1/L5. At low elevations, E5 AltBOC provided at least twice less single-frequency TEC noise as compared with data obtained from E5a or E5b. The short dataset of our study could limit the obtained estimates; however, we expect that the AltBOC single-frequency TEC will still surpass the BPSK analogue in noise parameters when the solar cycle evolves and geomagnetic activity increases. Therefore, AltBOC signals could advance geoscience
    corecore