210 research outputs found

    RotationNet: Joint Object Categorization and Pose Estimation Using Multiviews from Unsupervised Viewpoints

    Full text link
    We propose a Convolutional Neural Network (CNN)-based model "RotationNet," which takes multi-view images of an object as input and jointly estimates its pose and object category. Unlike previous approaches that use known viewpoint labels for training, our method treats the viewpoint labels as latent variables, which are learned in an unsupervised manner during the training using an unaligned object dataset. RotationNet is designed to use only a partial set of multi-view images for inference, and this property makes it useful in practical scenarios where only partial views are available. Moreover, our pose alignment strategy enables one to obtain view-specific feature representations shared across classes, which is important to maintain high accuracy in both object categorization and pose estimation. Effectiveness of RotationNet is demonstrated by its superior performance to the state-of-the-art methods of 3D object classification on 10- and 40-class ModelNet datasets. We also show that RotationNet, even trained without known poses, achieves the state-of-the-art performance on an object pose estimation dataset. The code is available on https://github.com/kanezaki/rotationnetComment: 24 pages, 23 figures. Accepted to CVPR 201

    ヘルダーの作品群における感覚論とその受容

    Get PDF
    関西大学独逸文学会研究発表概要(第109回研究発表会)[Resümee der Referate bei der Tagung 2016

    Dimensionality's blessing: Clustering images by underlying distribution

    Get PDF
    Many high dimensional vector distances tend to a constant. This is typically considered a negative "contrast-loss" phenomenon that hinders clustering and other machine learning techniques. We reinterpret "contrast-loss" as a blessing. Re-deriving "contrast-loss" using the law of large numbers, we show it results in a distribution's instances concentrating on a thin "hyper-shell". The hollow center means apparently chaotically overlapping distributions are actually intrinsically separable. We use this to develop distribution-clustering, an elegant algorithm for grouping of data points by their (unknown) underlying distribution. Distribution-clustering, creates notably clean clusters from raw unlabeled data, estimates the number of clusters for itself and is inherently robust to "outliers" which form their own clusters. This enables trawling for patterns in unorganized data and may be the key to enabling machine intelligence.Comment: Accepted in CVPR 201
    corecore