9 research outputs found

    Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chloroquine (CQ), the worldwide used anti-malarial drug, has recently being focused as a potential anti-cancer agent as well as a chemosensitizer when used in combination with anti-cancer drugs. It has been shown to inhibit cell growth and/or to induce cell death in various types of cancer. 5-Fluorouracil (5-FU) is the chemotherapeutic agent of first choice in colorectal cancer, but in most cases, resistance to 5-FU develops through various mechanisms. Here, we focused on the combination of CQ as a mechanism to potentiate the inhibitory effect of 5-FU on human colon cancer cells.</p> <p>Methods</p> <p>HT-29 cells were treated with CQ and/or 5-FU, and their proliferative ability, apoptosis and autophagy induction effects, and the affection of the cell cycle were evaluated. The proliferative ability of HT-29 was analyzed by the MTS assay. Apoptosis was quantified by flow-cytometry after double-staining of the cells with AnnexinV/PI. The cell cycle was evaluated by flow-cytometry after staining of cells with PI. Autophagy was quantified by flow-cytometry and Western blot analysis. Finally, to evaluate the fate of the cells treated with CQ and/or 5-FU, the colony formation assay was performed.</p> <p>Results</p> <p>5-FU inhibited the proliferative activity of HT-29 cells, which was mostly dependent on the arrest of the cells to the G0/G1-phase but also partially on apoptosis induction, and the effect was potentiated by CQ pre-treatment. The potentiation of the inhibitory effect of 5-FU by CQ was dependent on the increase of p21<sup>Cip1 </sup>and p27<sup>Kip1 </sup>and the decrease of CDK2. Since CQ is reported to inhibit autophagy, the catabolic process necessary for cell survival under conditions of cell starvation or stress, which is induced by cancer cells as a protective mechanism against chemotherapeutic agents, we also analyzed the induction of autophagy in HT-29. HT-29 induced autophagy in response to 5-FU, and CQ inhibited this induction, a possible mechanism of the potentiation of the anti-cancer effect of 5-FU.</p> <p>Conclusion</p> <p>Our findings suggest that the combination therapy with CQ should be a novel therapeutic modality to improve efficacy of 5-FU-based chemotherapy, possibly by inhibiting autophagy-dependent resistance to chemotherapy.</p

    Diagnostic performance of 18F-FDG PET/CT using point spread function reconstruction on initial staging of rectal cancer: a comparison study with conventional PET/CT and pelvic MRI

    No full text
    Abstract Background Accurate staging is crucial for treatment selection and prognosis prediction in patients with rectal cancer. Point spread function (PSF) reconstruction can improve spatial resolution and signal-to-noise ratio of PET imaging. The aim of this study was to evaluate the effectiveness of 18F-FDG PET/CT with PSF reconstruction for initial staging in rectal cancer compared with conventional PET/CT and pelvic MRI. Methods A total of 59 patients with rectal cancer underwent preoperative 18F-FDG PET/CT and pelvic MRI. The maximum standardized uptake value (SUVmax) and lesion to background (L/B) ratio of possible metastatic lymph nodes, and metabolic tumor volumes (MTVs) of primary tumors were calculated. For N and T (T1-2 vs T3-4) staging, sensitivities, specificities, positive predictive values, negative predictive values, and accuracies were compared between conventional PET/CT [reconstructed with ordered subset expectation maximization (OSEM)], PSF-PET/CT (reconstructed with OSEM+PSF), and pelvic MRI. Histopathologic analysis was the reference standard. Results For N staging, PSF-PET/CT provided higher sensitivity (78.6%) than conventional PET/CT (64.3%), and pelvic MRI (57.1%), and all techniques showed high specificity (PSF-PET: 95.4%, conventional PET: 96.7%, pelvic MRI: 93.5%). SUVmax and L/B ratio were significantly higher in PSF-PET/CT than conventional-PET/CT (p < 0.001). The accuracy for T staging in PSF-PET/CT (69.4%) was not significantly different to conventional PET/CT (73.5%) and pelvic MRI (73.5%). MTVs of PSF and conventional PET showed a significant difference among T stages (p < 0.001), with higher values in advanced stages. In M staging, both PSF and conventional PET/CT diagnosed all distant metastases correctly. Conclusions PSF-PET/CT produced images with higher lesion-to-background contrast than conventional PET/CT, which allowed improved detection of lymph node metastasis without compromising specificity, and showed comparable diagnostic value to MRI in local staging. PSF-PET/CT is likely to have a great value for initial staging in rectal cancer

    Adiponectin receptor 2 is negatively associated with lymph node metastasis of colorectal cancer

    No full text
    Adiponectin is a hormone secreted by adipose tissue and has a variety of functions including the inhibition of tumor growth. The expression and function of the two major adiponectin receptors, AdipoR1 and AdipoR2, in malignant tissue have not been well characterized. In the present study, we evaluated the mRNA levels of AdipoR1 and AdipoR2 expression in 48 surgically resected colorectal cancer specimens, as well as normal colonic mucosa, by quantitative RT-PCR. The values obtained were standardized by β-actin mRNA, and the correlation between their relative expression levels and the clinicopathological characteristics of the patients was examined. The relative expression levels of AdipoR1 and AdipoR2 were significantly reduced in cancer tissue compared with normal tissue (AdipoR1: 0.97±0.39 vs. 1.37±0.41, P<0.0001; AdipoR2: 0.92±0.31 vs. 1.60±0.46, P<0.0001). AdipoR1 and AdipoR2 levels were further reduced in tumors with nodal metastases and the difference was statistically significant in the case of AdipoR2 (0.79±0.27 vs. 1.02±0.30, P=0.012). The results of this study demonstrated that the expression levels of adiponectin receptors are reduced in cancer specimens compared to normal tissue, indicating a downregulation in the course of the development and progression of colorectal cancer. Since adiponectin is abundantly present in the whole body and has inhibitory effects on cancer cells, this downregulation of the receptors may be an escape mechanism of malignant cells from the suppressive effects of adiponectin
    corecore