50 research outputs found

    Preoperative obliteration of choroidal arteries in the treatment of large hypervascular tumors in the lateral ventricle

    Get PDF
    BACKGROUND: Removal of large hypervascular tumors in the lateral ventricle still poses a surgical challenge. These tumors are usually fed from choroidal arteries, and vascular control is typically performed late during the removal. We aimed to evaluate the clinical efficacy of our strategy for persistent preoperative obliteration of feeders from the choroidal arteries to manage large hypervascular tumors in the lateral ventricle. METHODS: We retrospectively analyzed six patients with hypervascular tumors in the lateral ventricle. We first attempted to obstruct feeders using endovascular treatment, and, if unavailable, performed initial microsurgical occlusion through the temporal horn for the staged tumor removal. RESULTS: In all patients, feeder obliteration was successfully performed; the anterior choroidal arteries were occluded by the endovascular treatment and microsurgical occlusion in one and five patients, respectively, while the lateral posterior choroidal arteries were occluded via endovascular treatment in four patients. No patients had permanent symptoms due to feeder obliteration, and tumor devascularization was achieved at the mean rate of 69.9%. During the tumor removal, the mean blood loss volume was 253 ml. No postoperative hemorrhage had occurred, and all patients scored ≤ 2 on the modified Rankin Scale at six months post-removal. CONCLUSIONS: Although further studies are warranted, persistent feeder obliteration of choroidal arteries could be an effective treatment strategy against large hypervascular tumors in the lateral ventricle

    スルフォラファンの肝癌発育抑制効果および血管新生抑制効果に関する基礎的検討

    Get PDF
    Sulforaphane (SFN) exhibits inhibitory effects in different types of cancers. However, its inhibitory effect on liver cancer remains unknown. This study aimed to determine the therapeutic potential of SFN for the treatment of liver cancer and explore the functional mechanisms underlying the inhibitory effects of SFN. Water-Soluble Tetrazolium salt (WST-1) assay was performed to assess the in vitro effect of SFN on cell proliferation in the human liver cancer cell lines, HepG2 and Huh-7. The mRNA levels of Nrf2 target genes and cell cycle-related genes were determined using quantitative RT-PCR. For assessing the inhibitory effect of SFN in vivo, we injected immortalized liver cancer cells into BALB/c nude mice as a xenograft model. SFN was orally administrated daily after tumor inoculation and continued for thirty-five days until their sacrifices. Nrf2 activation, induced by SFN, was confirmed by mRNA upregulation of HO-1, MRP2, and NQO1 in both the cell lines. Significant inhibition of liver cancer cell proliferation by SFN was shown in vitro in a dose-dependent manner by the downregulation of CCND1, CCNB1, CDK1 and CDK2. In in vivo studies, the administration of SFN significantly reduced the subcutaneous tumor burdens at the end of experiments by suppressing tumor cell proliferation, confirmed by Ki67 immunohistochemical analysis. The mRNA levels of CCND1, CCNB1, CDK1 and CDK2 were also decreased in these SFNtreated xenograft tumors. Moreover, CD34 immunostaining elucidated that the intratumoral neovascularization was markedly attenuated in the SFN-treated xenograft tumors. SFN exerts inhibitory effect on human liver cancer cells with antiangiogenic activity. The earlier version of this study was presented at the meeting of AASLD Liver Learning on Oct 2017.博士(医学)・甲第707号・平成31年3月15日© The Author(s) 2018 Under License of Creative Commons Attribution 3.0 License https://creativecommons.org/licenses/by/3.0

    Aquaporin 1 water channel is overexpressed in the plasma membranes of pancreatic ducts in patients with autoimmune pancreatitis

    Get PDF
    Chronic pancreatitis with all kinds of etiologies is characterized by pancreatic exocrine dysfunction especially impaired fluid secretion from pancreatic ducts. However, the molecular mechanism of this impaired fluid secretion in chronic pancreatitis is largely unknown. Aquaporin water channels are intrinsic membrane proteins expressed most of the cell types which have high osmotic water permeability. Among them aquaporin 1 (AQP1) is a predominant water channel expressed in the plasma membranes of human pancreatic ducts. Exocrine function test revealed that fluid secretion was severely impaired in AIP. immunohistochemical analysis revealed that AQP1 is localized mainly in the apical and lateral membranes of small pancreatic ducts in control subjects. AQP1 expression was significantly increased in plasma membranes of pancreatic ducts in AIP. Upregulation of AQP1 expression seen in pancreatic ducts of patient with AIP may be caused by the reduced fluid secretion from the pancreas as compensation. Further study would be required to elucidate the precise molecular mechanism for the role of AQP1 in pancreatic fluid secretion from the pancreas in diseases characterized by the impaired ductal fluid secretion such as cystic fibrosis

    The CCR4-NOT Complex Is Implicated in the Viability of Aneuploid Yeasts

    Get PDF
    To identify the genes required to sustain aneuploid viability, we screened a deletion library of non-essential genes in the fission yeast Schizosaccharomyces pombe, in which most types of aneuploidy are eventually lethal to the cell. Aneuploids remain viable for a period of time and can form colonies by reducing the extent of the aneuploidy. We hypothesized that a reduction in colony formation efficiency could be used to screen for gene deletions that compromise aneuploid viability. Deletion mutants were used to measure the effects on the viability of spores derived from triploid meiosis and from a chromosome instability mutant. We found that the CCR4-NOT complex, an evolutionarily conserved general regulator of mRNA turnover, and other related factors, including poly(A)-specific nuclease for mRNA decay, are involved in aneuploid viability. Defective mutations in CCR4-NOT complex components in the distantly related yeast Saccharomyces cerevisiae also affected the viability of spores produced from triploid cells, suggesting that this complex has a conserved role in aneuploids. In addition, our findings suggest that the genes required for homologous recombination repair are important for aneuploid viability

    Bandwidth-Efficient Blind Nonlinear Compensation of RF Receiver Employing Folded-Spectrum Sub-Nyquist Sampling Technique

    No full text

    Design of Dual-Band SHF BPF with Lower Band Reconfigurability and Direct Parallel-Connected Configuration

    No full text

    BRITAIN UNDER MRS THATCHER

    No full text
    An adaptive semi-blind space-time equaliser (STE) has recently been proposed based on a concurrent gradient-Newton constant modulus algorithm and soft decision-directed scheme for dispersive multiple-input multiple-output (MIMO) systems that employ high-throughput quadrature amplitude modulation signalling. We investigate the performance of this adaptive semi-blind STE operating in Rayleigh fading MIMO systems. Our results obtained show that the tracking performance of this semi-blind adaptive algorithm is close to that of the training-based recursive least squares algorithm. This study, therefore, demonstrates that the proposed semi-blind algorithm offers a practical means to adapt a STE in the hostile dispersive Rayleigh fading MIMO environment
    corecore