101 research outputs found
Role of Ceramide from Glycosphingolipids and Its Metabolites in Immunological and Inflammatory Responses in Humans
Glycosphingolipids (GSLs) are composed of hydrophobic ceramide and hydrophilic sugar chains. GSLs cluster to form membrane microdomains (lipid rafts) on plasma membranes, along with several kinds of transducer molecules, including Src family kinases and small G proteins. However, GSL-mediated biological functions remain unclear. Lactosylceramide (LacCer, CDw17) is highly expressed on the plasma membranes of human phagocytes and mediates several immunological and inflammatory reactions, including phagocytosis, chemotaxis, and superoxide generation. LacCer forms membrane microdomains with the Src family tyrosine kinase Lyn and the Gαi subunit of heterotrimeric G proteins. The very long fatty acids C24:0 and C24:1 are the main ceramide components of LacCer in neutrophil plasma membranes and are directly connected with the fatty acids of Lyn and Gαi. These observations suggest that the very long fatty acid chains of ceramide are critical for GSL-mediated outside-in signaling. Sphingosine is another component of ceramide, with the hydrolysis of ceramide by ceramidase producing sphingosine and fatty acids. Sphingosine is phosphorylated by sphingosine kinase to sphingosine-1-phosphate, which is involved in a wide range of cellular functions, including growth, differentiation, survival, chemotaxis, angiogenesis, and embryogenesis, in various types of cells. This review describes the role of ceramide moiety of GSLs and its metabolites in immunological and inflammatory reactions in human
Type of Critical Heat Flux for Downward Flow in a Vertical Tube
CHF characteristics of downward flow are quite different from that of upward flow due to complicated two-phase flow structure caused by the influence of buoyancy. In this investigation, CHF experiment was carried out on the forced convective boiling system with astainless steel tube of 15 mm in inner diameter and 400 mm in heating length. As the experimental results on the basis of the axial location of CHF occurrence, the inlet fluid temperature and the pressure drop of test section, CHF could be classified into three modes i.e., the dryout of falling liquid film at high quality condition, the CHF due to flooding at low quality condition and the CHF caused by the instability of two-phase flow structure at near subcooled condition.通計番号 No.14-1
Effects of single therapeutic doses of promethazine, fexofenadine and olopatadine on psychomotor function and histamine-induced wheal- and flare-responses: a randomized double-blind, placebo-controlled study in healthy volunteers
Since most first-generation antihistamines have undesirable sedative effects on the central nervous systems (CNS), newer (second-generation) antihistamines have been developed to improve patients’ quality of life. However, there are few reports that directly compare the antihistaminic efficacy and impairment of psychomotor functions. We designed a double-blind, placebo controlled, crossover study to concurrently compare the clinical effectiveness of promethazine, a first-generation antihistamine, and fexofenadine and olopatadine, second-generation antihistamines, by measuring their potency as peripheral inhibitors of histamine-induced wheal and flare. Further, we investigated their sedative effects on the CNS using a battery of psychomotor tests. When single therapeutic doses of fexofenadine (60 mg), olopatadine (5 mg) and promethazine (25 mg) were given in a double-blind manner to 24 healthy volunteers, all antihistamines produced a significant reduction in the wheal and flare responses induced by histamine. In the comparison among antihistamines, olopatadine showed a rapid inhibitory effect compared with fexofenadine and promethazine, and had a potent effect compared with promethazine. In a battery of psychomotor assessments using critical flicker fusion, choice reaction time, compensatory tracking, rapid visual information processing and a line analogue rating scale as a subjective assessment of sedation, promethazine significantly impaired psychomotor function. Fexofenadine and olopatadine had no significant effect in any of the psychomotor tests. Promethazine, fexofenadine and olopatadine did not affect behavioral activity, as measured by wrist actigraphy. These results suggest that olopatadine at a therapeutic dose has greater antihistaminergic activity than promethazine, and olopatadine and fexofenadine did not cause cognitive or psychomotor impairment
Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world
Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic.
Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality.
Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States.
Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis.
Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
Cooperative Effect of the Attenuation Determinants Derived from Poliovirus Sabin 1 Strain Is Essential for Attenuation of Enterovirus 71 in the NOD/SCID Mouse Infection Model▿
Enterovirus 71 (EV71) is a causative agent of hand, foot, and mouth disease and is also associated with serious neurological disorders. An attenuated EV71 strain [EV71(S1-3′)] has been established in the cynomolgus monkey infection model; this strain contains the attenuation determinants derived from the type 1 poliovirus vaccine strain, Sabin 1 [PV1(Sabin)], in the 5′ nontranslated region (NTR), 3D polymerase, and 3′ NTR. In this study, we analyzed the effect of the attenuation determinants of PV1(Sabin) on EV71 infection in a NOD/SCID mouse infection model. We isolated a mouse-adapted EV71 strain [EV71(NOD/SCID)] that causes paralysis of the hind limbs in 3- to 4-week-old NOD/SCID mice by adaptation of the virulent EV71(Nagoya) strain in the brains of NOD/SCID mice. A single mutation at nucleotide 2876 that caused an amino acid change in capsid protein VP1 (change of the glycine at position 145 to glutamic acid) was essential for the mouse-adapted phenotype in NOD/SCID mice. Next, we introduced attenuation determinants derived from PV1(Sabin) along with the mouse adaptation mutation into the EV71(Nagoya) genome. In 4-week-old mice, the determinants in the 3D polymerase and 3′ NTR, which are the major temperature-sensitive determinants, had a strong effect on attenuation. In contrast, the effect of individual determinants was weak in 3-week-old NOD/SCID mice, and all the determinants were required for substantial attenuation. These results suggest that a cooperative effect of the attenuation determinants of PV1(Sabin) is essential for attenuated neurovirulence of EV71
Role of Ceramide from Glycosphingolipids and Its Metabolites in Immunological and Inflammatory Responses in Humans
Glycosphingolipids (GSLs) are composed of hydrophobic ceramide and hydrophilic sugar chains. GSLs cluster to form membrane microdomains (lipid rafts) on plasma membranes, along with several kinds of transducer molecules, including Src family kinases and small G proteins. However, GSL-mediated biological functions remain unclear. Lactosylceramide (LacCer, CDw17) is highly expressed on the plasma membranes of human phagocytes and mediates several immunological and inflammatory reactions, including phagocytosis, chemotaxis, and superoxide generation. LacCer forms membrane microdomains with the Src family tyrosine kinase Lyn and the Gαi subunit of heterotrimeric G proteins. The very long fatty acids C24:0 and C24:1 are the main ceramide components of LacCer in neutrophil plasma membranes and are directly connected with the fatty acids of Lyn and Gαi. These observations suggest that the very long fatty acid chains of ceramide are critical for GSL-mediated outside-in signaling. Sphingosine is another component of ceramide, with the hydrolysis of ceramide by ceramidase producing sphingosine and fatty acids. Sphingosine is phosphorylated by sphingosine kinase to sphingosine-1-phosphate, which is involved in a wide range of cellular functions, including growth, differentiation, survival, chemotaxis, angiogenesis, and embryogenesis, in various types of cells. This review describes the role of ceramide moiety of GSLs and its metabolites in immunological and inflammatory reactions in human
Intravenous Inoculation of Replication-Deficient Recombinant Vaccinia Virus DIs Expressing Simian Immunodeficiency Virus Gag Controls Highly Pathogenic Simian-Human Immunodeficiency Virus in Monkeys
To be effective, a vaccine against human immunodeficiency virus type 1 (HIV-1) must induce virus-specific T-cell responses and it must be safe for use in humans. To address these issues, we developed a recombinant vaccinia virus DIs vaccine (rDIsSIVGag), which is nonreplicative in mammalian cells and expresses the full-length gag gene of simian immunodeficiency virus (SIV). Intravenous inoculation of 10(6) PFU of rDIsSIVGag in cynomologus macaques induced significant levels of gamma interferon (IFN-γ) spot-forming cells (SFC) specific for SIV Gag. Antigen-specific lymphocyte proliferative responses were also induced and were temporally associated with the peak of IFN-γ SFC activity in each macaque. In contrast, macaques immunized with a vector control (rDIsLacZ) showed no significant induction of antigen-specific immune responses. After challenge with a highly pathogenic simian-human immunodeficiency virus (SHIV), CD4(+) T lymphocytes were maintained in the peripheral blood and lymphoid tissues of the immunized macaques. The viral set point in plasma was also reduced in these animals, which may be related to the enhancement of virus-specific intracellular IFN-γ(+) CD8(+) cell numbers and increased antibody titers after SHIV challenge. These results demonstrate that recombinant DIs has potential for use as an HIV/AIDS vaccine
Mongolia Gerbils Are Broadly Susceptible to Hepatitis E Virus
Although cell culture systems for hepatitis E virus (HEV) have been established by using cell lines such as PLC/PRF/5 and A549, small-animal models for this virus are limited. Since Mongolia gerbils are susceptible to genotype 1, 3 and 4 HEV (HEV-1, HEV-3 and HEV4), we intraperitoneally inoculated Mongolia gerbils with HEV-5, HEV-7, HEV-8, rabbit HEV or rat HEV in addition to the above three genotypes to investigate the infectivity and to assess whether Mongolia gerbil is an appropriate animal model for HEV infection. The results indicated that (i) HEV-5 and rat HEV were effectively replicated in the Mongolia gerbils in the same manner as HEV-4: large amounts of the viral RNA were detected in the feces and livers, and high titers of the serum anti-HEV IgG antibodies were induced in all animals. The feces were shown to contain HEV that is infectious to naïve gerbils. Furthermore, HEV-4, HEV-5 and rat HEV were successfully transmitted to the gerbils by oral inoculation. (ii) Although the viral RNA and serum anti-HEV IgG antibodies were detected in all animals inoculated with HEV-1 and HEV-8, both titers were low. The viral RNA was detected in the feces collected from two of three HEV-3-inoculated, and one of three HEV-7-inoculated gerbils, but the titers were low. The serum antibody titers were also low. The viruses excreted into the feces of HEV-1-, HEV-3-, HEV-7- and HEV-8-inoculated gerbils failed to infect naïve Mongolia gerbils. (iii) No infection sign was observed in the rabbit HEV-inoculated gerbils. These results demonstrated that Mongolia gerbils are broadly susceptible to HEV, and their degree of sensitivity was dependent on the genotype. Mongolia gerbils were observed to be susceptible to not only HEVs belonging to HEV-A but also to rat HEV belonging to HEV-C1, and thus Mongolia gerbil could be useful as a small-animal model for cross-protection experiments between HEV-A and HEV-C1. Mongolia gerbils may also be useful for the evaluation of the efficacy of vaccines against HEV
- …