28 research outputs found
Detection of quantitative trait loci controlling pre-harvest sprouting resistance by using backcrossed populations of japonica rice cultivars
Backcrossed inbred lines (BILs) and a set of reciprocal chromosome segment substitution lines (CSSLs) derived from crosses between japonica rice cultivars Nipponbare and Koshihikari were used to detect quantitative trait loci (QTLs) for pre-harvest sprouting resistance. In the BILs, we detected one QTL on chromosome 3 and one QTL on chromosome 12. The QTL on the short arm of chromosome 3 accounted for 45.0% of the phenotypic variance and the Nipponbare allele of the QTL increased germination percentage by 21.3%. In the CSSLs, we detected seven QTLs, which were located on chromosomes 2, 3 (two), 5, 8 and 11 (two). All Nipponbare alleles of the QTLs were associated with an increased rate of germination. The major QTL for pre-harvest sprouting resistance on the short arm of chromosome 3 was localized to a 474-kbp region in the Nipponbare genome by the SSR markers RM14240 and RM14275 by using 11 substitution lines to replace the different short chromosome segments on chromosome 3. This QTL co-localized with the low-temperature germinability gene qLTG3-1. The level of germinability under low temperature strongly correlated with the level of pre-harvest sprouting resistance in the substitution lines. Sequence analyses revealed a novel functional allele of qLTG3-1 in Nipponbare and a loss-of-function allele in Koshihikari. The allelic difference in qLTG3-1 between Nipponbare and Koshihikari is likely to be associated with differences in both pre-harvest sprouting resistance and low-temperature germinability
Genetic Elucidation for Response of Flowering Time to Ambient Temperatures in Asian Rice Cultivars
Climate resilience of crops is critical for global food security. Understanding the genetic basis of plant responses to ambient environmental changes is key to developing resilient crops. To detect genetic factors that set flowering time according to seasonal temperature conditions, we evaluated differences of flowering time over years by using chromosome segment substitution lines (CSSLs) derived from japonica rice cultivars "Koshihikari" x "Khao Nam Jen", each with different robustness of flowering time to environmental fluctuations. The difference of flowering times in 9 years' field tests was large in "Khao Nam Jen" (36.7 days) but small in "Koshihikari" (9.9 days). Part of this difference was explained by two QTLs. A CSSL with a "Khao Nam Jen" segment on chromosome 11 showed 28.0 days' difference; this QTL would encode a novel flowering-time gene. Another CSSL with a segment from "Khao Nam Jen" in the region around Hd16 on chromosome 3 showed 23.4 days" difference. A near-isogenic line (NIL) for Hd16 showed 21.6 days' difference, suggesting Hd16 as a candidate for this QTL. RNA-seq analysis showed differential expression of several flowering-time genes between early and late flowering seasons. Low-temperature treatment at panicle initiation stage significantly delayed flowering in the CSSL and NIL compared with "Koshihikari". Our results unravel the molecular control of flowering time under ambient temperature fluctuations
Natural Variation in the Flag Leaf Morphology of Rice Due to a Mutation of the NARROW LEAF 1 Gene in Oryza sativa L.
We investigated the natural variations in the flag leaf morphology of rice. We conducted a principal component analysis based on nine flag leaf morphology traits using 103 accessions from the National Institute of Agrobiological Sciences Core Collection. The first component explained 39% of total variance, and the variable with highest loading was the width of the flag leaf (WFL). A genome-wide association analysis of 102 diverse Japanese accessions revealed that marker RM6992 on chromosome 4 was highly associated with WFL. In analyses of progenies derived from a cross between Takanari and Akenohoshi, the most significant quantitative trait locus (QTL) for WFL was in a 10.3-kb region containing the NARROW LEAF 1 (NAL1) gene, located 0.4 Mb downstream of RM6992. Analyses of chromosomal segment substitution lines indicated that a mutation (G1509A single-nucleotide mutation, causing an R233H amino acid substitution in NAL1) was present at the QTL. This explained 13 and 20% of total variability in WFL and the distance between small vascular bundles, respectively. The mutation apparently occurred during rice domestication and spread into japonica, tropical japonica, and indica subgroups. Notably, one accession, Phulba, had a NAL1 allele encoding only the N-terminal, or one-fourth, of the wild-type peptide. Given that the Phulba allele and the histidine-type allele showed essentially the same phenotype, the histidine-type allele was regarded as malfunctional. The phenotypes of transgenic plants varied depending on the ratio of histidine-type alleles to arginine-type alleles, raising the possibility that H(233)-type products function differently from and compete with R(233)-type products
Prediction of heading date, culm length, and biomass from canopy-height-related parameters derived from time-series UAV observations of rice
Unmanned aerial vehicles (UAVs) are powerful tools for monitoring crops for high-throughput phenotyping. Time-series aerial photography of fields can record the whole process of crop growth. Canopy height (CH), which is vertical plant growth, has been used as an indicator for the evaluation of lodging tolerance and the prediction of biomass and yield. However, there have been few attempts to use UAV-derived time-series CH data for field testing of crop lines. Here we provide a novel framework for trait prediction using CH data in rice. We generated UAV-based digital surface models of crops to extract CH data of 30 Japanese rice cultivars in 2019, 2020, and 2021. CH-related parameters were calculated in a non-linear time-series model as an S-shaped plant growth curve. The maximum saturation CH value was the most important predictor for culm length. The time point at the maximum CH contributed to the prediction of days to heading, and was able to predict stem and leaf weight and aboveground weight, possibly reflecting the association of biomass with duration of vegetative growth. These results indicate that the CH-related parameters acquired by UAV can be useful as predictors of traits typically measured by hand
Expression level of the sodium transporter gene OsHKT2;1 determines sodium accumulation of rice cultivars under potassium-deficient conditions
Under potassium (K)-deficient conditions, rice (Oryza sativa L.) actively takes up and utilizes sodium (Na) as an alternative element to K. In this study, we cloned a gene responsible for cultivar differences in shoot Na accumulation using a map-based cloning method. The responsible gene OsHKT2;1 encodes an Na transporter associated with Na uptake in root tissues, and its expression level was positively correlated with Na uptake potential in 11 rice cultivars. We found that OsHKT2;1 overexpression promoted shoot Na accumulation under low K supply and proposed that OsHKT2;1 expression level is a key factor in the Na accumulation potential in rice cultivars. However, under sufficient K supply, OsHKT2;1-overexpressing rice plants accumulated Na in roots but not in shoots. This result suggests that Na transfer from root to shoot may be regulated by another Na transporter
Discovery of QTL Alleles for Grain Shape in the Japan-MAGIC Rice Population Using Haplotype Information
A majority of traits are determined by multiple quantitative trait loci (QTL) that can have pleiotropic effects. A multi-parent advanced generation inter-cross (MAGIC) population is well suited for genetically analyzing the effects of multiple QTL on traits of interest because it contains a higher number of QTL alleles than a biparental population. We previously produced the JAPAN-MAGIC (JAM) population, derived from eight rice (Oryza sativa L.) cultivars with high yield and biomass in Japan, and developed the method of genome-wide association study (GWAS) using haplotype information on the JAM lines. This method was effective for identifying major genes such as Waxy for eating quality and Sd1 for culm length. Here, we show that haplotype-based GWAS is also effective for the evaluation of multiple QTL with small effects on rice grain shape in the JAM lines. Although both the haplotype- and SNP-based GWAS identified multiple QTL for grain length and width, the sum of the estimated trait values of each allele for the QTL detected by haplotype-based GWAS had higher correlation with observed values than those detected by SNP-based GWAS, indicating high-accuracy QTL detection in the haplotype-based GWAS. Furthermore, the study revealed pleiotropic effects of some QTL regions in regulation of grain shape, suggesting that the haplotype-based GWAS using the JAM lines is an effective means to evaluate the main and side effects of haplotypes at each QTL. Information on the pleiotropic effects of haplotypes on various traits will be useful for designing ideal lines in a breeding program
Surveillance of panicle positions by unmanned aerial vehicle to reveal morphological features of rice.
Rice plant architecture affects biomass and grain yield. Thus, it is important to select rice genotypes with ideal plant architecture. High-throughput phenotyping by use of an unmanned aerial vehicle (UAV) allows all lines in a field to be observed in less time than with traditional procedures. However, discrimination of plants in dense plantings is difficult, especially during the reproductive stage, because leaves and panicles overlap. Here, we developed an original method that relies on using UAV to identify panicle positions for dissecting plant architecture and to distinguish rice lines by detecting red flags attached to panicle bases. The plant architecture of recombinant inbred lines derived from Japanese cultivars 'Hokuriku 193' and 'Mizuhochikara', which differ in plant architecture, was assessed using a commercial camera-UAV system. Orthomosaics were made from UAV digital images. The center of plants was plotted on the image during the vegetative stage. The horizontal distance from the center to the red flag during the reproductive stage was used as the panicle position (PP). The red flags enabled us to recognize the positions of the panicles at a rate of 92%. The PP phenotype was related to but was not identical with the phenotypes of the panicle base angle, leaf sheath angle, and score of spreading habit. These results indicate that PP on orthomosaics could be used as an index of plant architecture under field conditions