65 research outputs found
Single-shot laser-driven neutron resonance spectroscopy for temperature profiling
Lan Z., Arikawa Y., Mirfayzi S.R., et al. Single-shot laser-driven neutron resonance spectroscopy for temperature profiling. Nature Communications 15, 5365 (2024); https://doi.org/10.1038/s41467-024-49142-y.The temperature measurement of material inside of an object is one of the key technologies for control of dynamical processes. For this purpose, various techniques such as laser-based thermography and phase-contrast imaging thermography have been studied. However, it is, in principle, impossible to measure the temperature of an element inside of an object using these techniques. One of the possible solutions is measurements of Doppler brooding effect in neutron resonance absorption (NRA). Here we present a method to measure the temperature of an element or an isotope inside of an object using NRA with a single neutron pulse of approximately 100 ns width provided from a high-power laser. We demonstrate temperature measurements of a tantalum (Ta) metallic foil heated from the room temperature up to 617 K. Although the neutron energy resolution is fluctuated from shot to shot, we obtain the temperature dependence of resonance Doppler broadening using a reference of a silver (Ag) foil kept to the room temperature. A free gas model well reproduces the results. This method enables element(isotope)-sensitive thermometry to detect the instantaneous temperature rise in dynamical processes
In-Target Proton–Boron Nuclear Fusion Using a PW-Class Laser
Nuclear reactions between protons and boron-11 nuclei (p–B fusion) that were used to yield energetic α-particles were initiated in a plasma that was generated by the interaction between a PW-class laser operating at relativistic intensities (~3 × 10^19 W/cm2) and a 0.2-mm thick boron nitride (BN) target. A high p–B fusion reaction rate and hence, a large α-particle flux was generated and measured, thanks to a proton stream accelerated at the target’s front surface. This was the first proof of principle experiment to demonstrate the efficient generation of α-particles (~10^10/sr) through p–B fusion reactions using a PW-class laser in the “in-target” geometry
Effect of irradiation uniformity on quasi-isentropic shock compression of solid spheres
Takizawa R., Sakagami H., Nagatomo H., et al. Effect of irradiation uniformity on quasi-isentropic shock compression of solid spheres. High Energy Density Physics 52, 101124 (2024); https://doi.org/10.1016/j.hedp.2024.101124.In inertial confinement fusion using central ignition, the ignition hot spot is generated through self-heating during fuel compression. In contrast, fast ignition creates the hot spot through external heating. This difference allows the fast ignition approach to use a solid sphere as the fusion fuel shape. The implosion of a solid sphere is one form of laser-direct-drive slow implosion. Solid sphere fuel exhibits tolerance to hydrodynamic instability and can be mass-produced relatively easily, offering significant advantages for developing inertial fusion energy. Achieving high fuel peak and areal densities of with a solid sphere requires quasi-isentropic compression, which involves multiple shock waves. Our results show the critical role of uniform laser irradiation in initiating weak shock waves in the early phase, which is essential for forming a uniform and dense fuel core with solid spheres. Furthermore, dynamically adjusting the laser spot diameter could be crucial in optimizing the effectiveness of laser-direct-drive and fast ignition techniques when using solid sphere fuel
Fabrication of high-concentration Cu-doped deuterated targets for fast ignition experiments
In high-energy-density physics, including inertial fusion energy using high-power lasers, doping tracer atoms and deuteration of target materials play an important role in diagnosis. For example, a low-concentration Cu dopant acts as an x-ray source for electron temperature detection while a deuterium dopant acts as a neutron source for fusion reaction detection. However, the simultaneous achievement of Cu doping, a deuterated polymer, mechanical toughness and chemical robustness during the fabrication process is not so simple. In this study, we report the successful fabrication of a Cu-doped deuterated target. The obtained samples were characterized by inductively coupled plasma optical emission spectrometry, differential scanning calorimetry and Fourier transform infrared spectroscopy. Simultaneous measurements of Cu K-shell x-ray emission and beam fusion neutrons were demonstrated using a petawatt laser at Osaka University.Ikeda T., Kaneyasu Y., Hosokawa H., et al. Fabrication of high-concentration Cu-doped deuterated targets for fast ignition experiments. Nuclear Fusion 63, 016010 (2023); https://doi.org/10.1088/1741-4326/aca2ba
Hot Electron Spectra in Plain, Cone and Integrated Targets for FIREX-I using Electron Spectrometer
The traditional fast ignition scheme is that a compressed core created by an imploding laser is auxiliary heated and ignited by the hot electrons (produced by a short pulse laser guided through the cone). Here, the most suitable target design for fast ignition can be searched for by comparison of the spectra between varied targets using an electron spectrometer
- …