18 research outputs found

    COVID-19 vaccine effectiveness against severe COVID-19 requiring oxygen therapy, invasive mechanical ventilation, and death in Japan: A multicenter case-control study (MOTIVATE study).

    Get PDF
    INTRODUCTION: Since the SARS-CoV-2 Omicron variant became dominant, assessing COVID-19 vaccine effectiveness (VE) against severe disease using hospitalization as an outcome became more challenging due to incidental infections via admission screening and variable admission criteria, resulting in a wide range of estimates. To address this, the World Health Organization (WHO) guidance recommends the use of outcomes that are more specific to severe pneumonia such as oxygen use and mechanical ventilation. METHODS: A case-control study was conducted in 24 hospitals in Japan for the Delta-dominant period (August-November 2021; "Delta") and early Omicron (BA.1/BA.2)-dominant period (January-June 2022; "Omicron"). Detailed chart review/interviews were conducted in January-May 2023. VE was measured using various outcomes including disease requiring oxygen therapy, disease requiring invasive mechanical ventilation (IMV), death, outcome restricting to "true" severe COVID-19 (where oxygen requirement is due to COVID-19 rather than another condition(s)), and progression from oxygen use to IMV or death among COVID-19 patients. RESULTS: The analysis included 2125 individuals with respiratory failure (1608 cases [75.7%]; 99.2% of vaccinees received mRNA vaccines). During Delta, 2 doses provided high protection for up to 6 months (oxygen requirement: 95.2% [95% CI:88.7-98.0%] [restricted to "true" severe COVID-19: 95.5% {89.3-98.1%}]; IMV: 99.6% [97.3-99.9%]; fatal: 98.6% [92.3-99.7%]). During Omicron, 3 doses provided high protection for up to 6 months (oxygen requirement: 85.5% [68.8-93.3%] ["true" severe COVID-19: 88.1% {73.6-94.7%}]; IMV: 97.9% [85.9-99.7%]; fatal: 99.6% [95.2-99.97]). There was a trend towards higher VE for more severe and specific outcomes. CONCLUSION: Multiple outcomes pointed towards high protection of 2 doses during Delta and 3 doses during Omicron. These results demonstrate the importance of using severe and specific outcomes to accurately measure VE against severe COVID-19, as recommended in WHO guidance in settings of intense transmission as seen during Omicron

    Down-regulation of transcobalamin receptor TCblR/CD320 by siRNA inhibits cobalamin uptake and proliferation of cells in culture

    Full text link
    Photograph used for a story in the Daily Oklahoman newspaper. Caption: "Motors are taken out of cars, tossed into boxcar by magnet which can hoist 6,000 pounds. Next stop is a maker of cast-iron sewer pipe in Texas.

    Accurate clinical genetic testing for autoinflammatory diseases using the next-generation sequencing platform MiSeq

    Get PDF
    Autoinflammatory diseases occupy one of a group of primary immunodeficiency diseases that are generally thought to be caused by mutation of genes responsible for innate immunity, rather than by acquired immunity. Mutations related to autoinflammatory diseases occur in 12 genes. For example, low-level somatic mosaic NLRP3 mutations underlie chronic infantile neurologic, cutaneous, articular syndrome (CINCA), also known as neonatal-onset multisystem inflammatory disease (NOMID). In current clinical practice, clinical genetic testing plays an important role in providing patients with quick, definite diagnoses. To increase the availability of such testing, low-cost high-throughput gene-analysis systems are required, ones that not only have the sensitivity to detect even low-level somatic mosaic mutations, but also can operate simply in a clinical setting. To this end, we developed a simple method that employs two-step tailed PCR and an NGS system, MiSeq platform, to detect mutations in all coding exons of the 12 genes responsible for autoinflammatory diseases. Using this amplicon sequencing system, we amplified a total of 234 amplicons derived from the 12 genes with multiplex PCR. This was done simultaneously and in one test tube. Each sample was distinguished by an index sequence of second PCR primers following PCR amplification. With our procedure and tips for reducing PCR amplification bias, we were able to analyze 12 genes from 25 clinical samples in one MiSeq run. Moreover, with the certified primers designed by our short program--which detects and avoids common SNPs in gene-specific PCR primers--we used this system for routine genetic testing. Our optimized procedure uses a simple protocol, which can easily be followed by virtually any office medical staff. Because of the small PCR amplification bias, we can analyze simultaneously several clinical DNA samples with low cost and can obtain sufficient read numbers to detect a low level of somatic mosaic mutations

    Modeling Patient-Derived Glioblastoma with Cerebral Organoids

    No full text
    Summary: The prognosis of patients with glioblastoma (GBM) remains dismal, with a median survival of approximately 15 months. Current preclinical GBM models are limited by the lack of a “normal” human microenvironment and the inability of many tumor cell lines to accurately reproduce GBM biology. To address these limitations, we have established a model system whereby we can retro-engineer patient-specific GBMs using patient-derived glioma stem cells (GSCs) and human embryonic stem cell (hESC)-derived cerebral organoids. Our cerebral organoid glioma (GLICO) model shows that GSCs home toward the human cerebral organoid and deeply invade and proliferate within the host tissue, forming tumors that closely phenocopy patient GBMs. Furthermore, cerebral organoid tumors form rapidly and are supported by an interconnected network of tumor microtubes that aids in the invasion of normal host tissue. Our GLICO model provides a system for modeling primary human GBM ex vivo and for high-throughput drug screening. : To address limitations with current preclinical glioblastoma (GBM) models, Linkous et al. establish a “GLICO” (cerebral organoid glioma) model to retro-engineer patient-specific GBMs using patient-derived glioma stem cells and human cerebral organoids. Resulting tumors closely phenocopy patient GBMs and are supported by tumor microtubes that promote invasion into host tissue. Keywords: cerebral organoids, glioma stem cells, glioblastoma, glioma, tumor microtubes, human embryonic stem cells, brain tumors, stem-cell-based disease models, tissue engineering, cancer stem cell

    Comprehensive molecular diagnosis of Epstein–Barr virus-associated lymphoproliferative diseases using next-generation sequencing

    No full text
    International audienceEpstein-Barr virus (EBV) is associated with several life-threatening diseases, such as lymphoproliferative disease (LPD), particularly in immunocompromised hosts. Some categories of primary immunodeficiency diseases (PIDs) including X-linked lymphoproliferative syndrome (XLP), are characterized by susceptibility and vulnerability to EBV infection. The number of genetically defined PIDs is rapidly increasing, and clinical genetic testing plays an important role in establishing a definitive diagnosis. Whole-exome sequencing is performed for diagnosing rare genetic diseases, but is both expensive and time-consuming. Low-cost, high-throughput gene analysis systems are thus necessary. We developed a comprehensive molecular diagnostic method using a two-step tailed polymerase chain reaction (PCR) and a next-generation sequencing (NGS) platform to detect mutations in 23 candidate genes responsible for XLP or XLP-like diseases. Samples from 19 patients suspected of having EBV-associated LPD were used in this comprehensive molecular diagnosis. Causative gene mutations (involving PRF1 and SH2D1A) were detected in two of the 19 patients studied. This comprehensive diagnosis method effectively detected mutations in all coding exons of 23 genes with sufficient read numbers for each amplicon. This comprehensive molecular diagnostic method using PCR and NGS provides a rapid, accurate, low-cost diagnosis for patients with XLP or XLP-like diseases
    corecore