92 research outputs found

    Activities of bone morphogenetic proteins in prolactin regulation by somatostatin analogs in rat pituitary GH3 cells

    Get PDF
    Involvement of the pituitary BMP system in the modulation of prolactin (PRL) secretion regulated by somatostatin analogs, including octreotide (OCT) and pasireotide (SOM230), and a dopamine agonist, bromocriptine (BRC), was examined in GH3 cells. GH3 cells are rat pituitary somato-lactotrope tumor cells that express somatostatin receptors (SSTRs) and BMP system molecules including BMP-4 and -6. Treatment with BMP-4 and -6 increased PRL and cAMP secretion by GH3 cells. The BMP-4 effects were neutralized by adding a BMP-binding protein Noggin. These findings suggest the activity of endogenous BMPs in augmenting PRL secretion by GH3 cells. BRC and SOM230 reduced PRL secretion, but OCT failed to reduce the PRL level. In GH3 cells activated by forskolin, BRC suppressed forskolin-induced PRL secretion with reduction in cAMP levels. OCT did not affect forskolin-induced PRL level, while SOM230 reduced PRL secretion and PRL mRNA expression induced by forskolin. BMP-4 treatment enhanced the reducing effect of SOM230 on forskolin-induced PRL level while BMP-4 did not affect the effects of OCT or BRC. Noggin treatment had no significant effect on the BRC actions reducing PRL levels by GH3 cells. However, in the presence of Noggin, OCT elicited an inhibitory effect on forskolin-induced PRL secretion and PRL mRNA expression, whereas the SOM230 effect on PRL reduction was in turn impaired. It was further found that BMP-4 and -6 suppressed SSTR-2 but increased SSTR-5 mRNA expression of GH3 cells. These findings indicate that Noggin rescues SSTR-2 but downregulates SSTR-5 by neutralizing endogenous BMP actions, leading to an increase in OCT sensitivity and a decrease in SOM230 sensitivity of GH3 cells. In addition, BMP signaling was facilitated in GH3 cells treated with forskolin. Collectively, these findings suggest that BMPs elicit differential actions in the regulation of PRL release dependent on cellular cAMP-PKA activity. BMPs may play a key role in the modulation of SSTR sensitivity of somato-lactotrope cells in an autocrine/paracrine manner

    SIGMA: Scala Internal Domain-Specific Languages for Model Manipulations

    No full text
    International audienceModel manipulation environments automate model operations such as model consistency checking and model transformation. A number of external model manipulation Domain-Specific Languages (DSL) have been proposed, in particular for the Eclipse Modeling Framework (EMF). While their higher levels of abstraction result in gains in expressiveness over general-purpose languages, their limitations in versatility, performance, and tool support together with the need to learn new languages may significantly contribute to accidental complexities. In this paper, we present Sigma, a family of internal DSLs embedded in Scala for EMF model consistency checking, model-to-model and model-to-text transformations. It combines the benefits of external model manipulation DSLs with general-purpose programming taking full advantage of Scala versatility, performance and tool support. The DSLs are compared to the state-of-the-art Epsilon languages in non-trivial model manipulation tasks that resulted in 20% to 70% reduction in code size and significantly better performance

    Ultrasonographic characteristics of small hepatocellular carcinoma.

    Get PDF
    The ultrasonographic characteristics of hepatocellular carcinomas (HCC) were investigated. Four typical features of HCCs, "mosaic internal echo pattern", "halo", "lateral shadow" and "posterior echo enhancement", were not recognized in minute HCCs smaller than 2 cm in diameter. These characteristics developed as the tumors grew. Only hypoechoic space-occupying lesions can be considered as small HCCs. In differentiating small HCCs from hypoechoic non-malignant space-occupying lesions in the cirrhotic liver, the ratios of short to long dimensions of the lesions seemed to be important since the ratios of HCCs were significantly larger than those of non-malignant lesions. The fact that 3 hyperechoic small HCCs could not be diagnosed even by celiac arteriography has suggested to us that ultrasonically guided biopsies should be performed in order to differentiate from small hemangiomas. Serum alpha-fetoprotein (AFP) levels of 1/3 of the patients with HCCs were below 100 ng/ml, indicating that it is impossible to detect small HCCs only by measuring serum AFP.</p

    Interferon gamma (IFN-γ) disrupts energy expenditure and metabolic homeostasis by suppressing SIRT1 transcription

    Get PDF
    Chronic inflammation impairs metabolic homeostasis and is intimately correlated with the pathogenesis of type 2 diabetes. The pro-inflammatory cytokine IFN-γ is an integral part of the metabolic inflammation circuit and contributes significantly to metabolic dysfunction. The underlying mechanism, however, remains largely unknown. In the present study, we report that IFN-γ disrupts the expression of genes key to cellular metabolism and energy expenditure by repressing the expression and activity of SIRT1 at the transcription level. Further analysis reveals that IFN-γ requires class II transactivator (CIITA) to repress SIRT1 transcription. CIITA, once induced by IFN-γ, is recruited to the SIRT1 promoter by hypermethylated in cancer 1 (HIC1) and promotes down-regulation of SIRT1 transcription via active deacetylation of core histones surrounding the SIRT1 proximal promoter. Silencing CIITA or HIC1 restores SIRT1 activity and expression of metabolic genes in skeletal muscle cells challenged with IFN-γ. Therefore, our data delineate an IFN-γ/HIC1/CIITA axis that contributes to metabolic dysfunction by suppressing SIRT1 transcription in skeletal muscle cells and as such shed new light on the development of novel therapeutic strategies against type 2 diabetes

    The Surgical Treatment of Female Genital Paget's Disease.

    No full text

    Update in Pathogenesis, Diagnosis, and Therapy of Prolactinoma

    No full text
    Prolactinomas comprise 30&ndash;50% of all pituitary neuroendocrine tumors, frequently occur in females aged 20 to 50, and cause hypogonadism and infertility. In typical cases, female patients exhibit galactorrhea and amenorrhea due to serum prolactin (PRL) elevation, and patients during pregnancy should be carefully treated. During diagnosis, other causes of hyperprolactinemia must be excluded, and an MRI is useful for detecting pituitary neuroendocrine tumors. For treating prolactinoma, dopamine agonists (DAs) are effective for decreasing PRL levels and shrinking tumor size in most patients. Some DA-resistant cases and the molecular mechanisms of resistance to a DA are partially clarified. The side effects of a DA include cardiac valve alterations and impulse control disorders. Although surgical therapies are invasive, recent analysis shows that long-term remission rates are higher than from medical therapies. The treatments for giant or malignant prolactinomas are challenging, and the combination of medication, surgery, and radiation therapy should be considered. Regarding pathogenesis, somatic SF3B1 mutations were recently identified even though molecular mechanisms in most cases of prolactinoma have not been elucidated. To understand the pathogenesis of prolactinomas, the development of new therapeutic approaches for treatment-resistant patients is expected. This review updates the recent advances in understanding the pathogenesis, diagnosis, and therapy of prolactinoma

    Hypothalamic Regulation of Corticotropin-Releasing Factor under Stress and Stress Resilience

    No full text
    This review addresses the molecular mechanisms of corticotropin-releasing factor (CRF) regulation in the hypothalamus under stress and stress resilience. CRF in the hypothalamus plays a central role in regulating the stress response. CRF stimulates adrenocorticotropic hormone (ACTH) release from the anterior pituitary. ACTH stimulates glucocorticoid secretion from the adrenal glands. Glucocorticoids are essential for stress coping, stress resilience, and homeostasis. The activated hypothalamic-pituitary-adrenal axis is suppressed by the negative feedback from glucocorticoids. Glucocorticoid-dependent repression of cAMP-stimulated Crf promoter activity is mediated by both the negative glucocorticoid response element and the serum response element. Conversely, the inducible cAMP-early repressor can suppress the stress response via inhibition of the cAMP-dependent Crf gene, as can the suppressor of cytokine signaling-3 in the hypothalamus. CRF receptor type 1 is mainly involved in a stress response, depression, anorexia, and seizure, while CRF receptor type 2 mediates “stress coping” mechanisms such as anxiolysis in the brain. Differential effects of FK506-binding immunophilins, FKBP4 and FKBP5, contribute to the efficiency of glucocorticoids under stress resilience. Together, a variety of factors contribute to stress resilience. All these factors would have the differential roles under stress resilience
    corecore