2,122 research outputs found

    Notes on Five-dimensional Kerr Black Holes

    Full text link
    The geometry of five-dimensional Kerr black holes is discussed based on geodesics and Weyl curvatures. Kerr-Star space, Star-Kerr space and Kruskal space are naturally introduced by using special null geodesics. We show that the geodesics of AdS Kerr black hole are integrable, which generalizes the result of Frolov and Stojkovic. We also show that five-dimensional AdS Kerr black holes are isospectrum deformations of Ricci-flat Kerr black holes in the sense that the eigenvalues of the Weyl curvature are preserved.Comment: 23 pages, 5 figures; analyses on the Weyl curvature of AdS Kerr black holes are extended, an appendix and references are adde

    Applications of the Ashtekar gravity to four dimensional hyperk\"ahler geometry and Yang-Mills Instantons

    Get PDF
    The Ashtekar-Mason-Newman equations are used to construct the hyperk\"ahler metrics on four dimensional manifolds. These equations are closely related to anti self-dual Yang-Mills equations of the infinite dimensional gauge Lie algebras of all volume preserving vector fields. Several examples of hyperk\"ahler metrics are presented through the reductions of anti self-dual connections. For any gauge group anti self-dual connections on hyperk\"ahler manifolds are constructed using the solutions of both Nahm and Laplace equations.Comment: 9pages, Figures are not include

    Exotic mesons with double charm and bottom flavor

    Full text link
    We study exotic mesons with double charm and bottom flavor, whose quark configuration is \bar{Q}\bar{Q}qq. This quark configuration has no annihilation process of quark and antiquark, and hence is a genuinely exotic states. We take a hadronic picture by considering the molecular states composed of a pair of heavy mesons, such as DD, DD* and D*D* for charm flavor, and BB, BB* and B*B* for bottom flavor. The interactions between heavy mesons are derived from the heavy quark effective theory. All molecular states are classified by I(J^P) quantum numbers, and are systematically studied up to the total angular momentum J \leq 2. By solving the coupled channel Schrodinger equations, due to the strong tensor force of one pion exchanging, we find bound and/or resonant states of various quantum numbers.Comment: 24 pages, 3 figure

    Graphene as a buffer layer for silicon carbide-on-insulator structures

    Get PDF
    We report an innovative technique for growing the silicon carbide-on-insulator (SiCOI) structure by utilizing polycrystalline single layer graphene (SLG) as a buffer layer. The epitaxial growth was carried out using a hot-mesh chemical vapor deposition (HM-CVD) technique. Cubic SiC (3C-SiC) thin film in (111) domain was realized at relatively low substrate temperature of 750 °C. 3C-SiC energy bandgap of 2.2 eV was confirmed. The Si-O absorption band observed in the grown film can be caused by the out-diffusion of the oxygen atom from SiO2 substrate or oxygen doping during the cleaning process. Further experimental works by optimizing the cleaning process, growth parameters of the present growth method, or by using other growth methods, as well, are expected to realize a high quality SiCOI structure, thereby opening up the way for a breakthrough in the development of advanced ULSIs with multifunctionalities

    Effects of Bulk Viscosity in Non-linear Bubble Dynamics

    Full text link
    The non-linear bubble dynamics equations in a compressible liquid have been modified considering the effects of compressibility of both the liquid and the gas at the bubble interface. A new bubble boundary equation has been derived, which includes a new term resulted from the liquid bulk viscosity effects. The influence of this term has been numerically investigated considering the effects of water vapor and chemical reactions on the bubble evolution. The results clearly indicate that the new term has an important damping role at the collapse, so that its consideration decreases the amplitude of the bubble rebounds after the collapse. This damping feature is more remarkable for higher deriving pressures.Comment: 4 pages, 7 figure

    Theory of vortex lattice effects on STM spectra in d-wave superconductors

    Full text link
    Theory of scanning tunneling spectroscopy of low energy quasiparticle (QP) states in vortex lattices of d-wave superconductors is developed taking account of the effects caused by an extremely large extension of QP wavefunctions in the nodal directions and the band structure in the QP spectrum. The oscillatory structures in STM spectra, which correspond to van Hove singularities are analysed. Theoretical calculations carried out for finite temperatures and scattering rates are compared with recent experimental data for high temperature cuprates.Comment: 4 pages, 3 eps figures, M2S-HTSC-VI conference paper, using Elsevier style espcrc2.st

    Magnetic quantization of electronic states in d-wave superconductors

    Full text link
    We derive a general quasiclassical approach for long-range magnetic-field quantization effects in superconductors. The method is applied to superclean d-wave superconductors in the mixed state. We study the delocalized states with energies ϵ≫Δ0H/Hc2\epsilon \gg \Delta_{0}\sqrt{H/H_{c2}}. We find that the energy spectrum consists of narrow energy bands whose centers are located at the Landau levels calculated in absence of the vortex potential. We show that transitions between the states belonging to the different Landau levels give rise to resonances in the a.c. quasiparticle conductivity and in the a.c. vortex friction.Comment: 11 pages, no figure

    Management of localized energy in discrete nonlinear transmission lines

    Full text link
    The manipulation of locked intrinsic localized modes/discrete breathers is studied experimentally in nonlinear electric transmission line arrays. Introducing a static lattice impurity in the form of a capacitor, resistor or inductor has been used both to seed or destroy and attract or repel these localized excitations. In a nonlinear di-element array counter propagating short electrical pulses traveling in the acoustic branch are used to generate a stationary intrinsic localized mode in the optic branch at any particular lattice site. By changing the pulse polarity the same localized excitation can be eliminated demonstrating that the dynamical impurity associated with the propagating electrical pulse in the acoustic branch can trigger optical localized mode behavior.Comment: submitte

    The falling chain of Hopkins, Tait, Steele and Cayley

    Get PDF
    A uniform, flexible and frictionless chain falling link by link from a heap by the edge of a table falls with an acceleration g/3g/3 if the motion is nonconservative, but g/2g/2 if the motion is conservative, gg being the acceleration due to gravity. Unable to construct such a falling chain, we use instead higher-dimensional versions of it. A home camcorder is used to measure the fall of a three-dimensional version called an xyzxyz-slider. After frictional effects are corrected for, its vertical falling acceleration is found to be ax/g=0.328±0.004a_x/g = 0.328 \pm 0.004. This result agrees with the theoretical value of ax/g=1/3a_x/g = 1/3 for an ideal energy-conserving xyzxyz-slider.Comment: 17 pages, 5 figure

    Differential biologic effects of CPD and 6-4PP UV-induced DNA damage on the induction of apoptosis and cell-cycle arrest

    Get PDF
    BACKGROUND: UV-induced damage can induce apoptosis or trigger DNA repair mechanisms. Minor DNA damage is thought to halt the cell cycle to allow effective repair, while more severe damage can induce an apoptotic program. Of the two major types of UV-induced DNA lesions, it has been reported that repair of CPD, but not 6-4PP, abrogates mutation. To address whether the two major forms of UV-induced DNA damage, can induce differential biological effects, NER-deficient cells containing either CPD photolyase or 6-4 PP photolyase were exposed to UV and examined for alterations in cell cycle and apoptosis. In addition, pTpT, a molecular mimic of CPD was tested in vitro and in vivo for the ability to induce cell death and cell cycle alterations. METHODS: NER-deficient XPA cells were stably transfected with CPD-photolyase or 6-4PP photolyase to specifically repair only CPD or only 6-4PP. After 300 J/m(2 )UVB exposure photoreactivation light (PR, UVA 60 kJ/m(2)) was provided for photolyase activation and DNA repair. Apoptosis was monitored 24 hours later by flow cytometric analysis of DNA content, using sub-G1 staining to indicate apoptotic cells. To confirm the effects observed with CPD lesions, the molecular mimic of CPD, pTpT, was also tested in vitro and in vivo for its effect on cell cycle and apoptosis. RESULTS: The specific repair of 6-4PP lesions after UVB exposure resulted in a dramatic reduction in apoptosis. These findings suggested that 6-4PP lesions may be the primary inducer of UVB-induced apoptosis. Repair of CPD lesions (despite their relative abundance in the UV-damaged cell) had little effect on the induction of apoptosis. Supporting these findings, the molecular mimic of CPD, (dinucleotide pTpT) could mimic the effects of UVB on cell cycle arrest, but were ineffective to induce apoptosis. CONCLUSION: The primary response of the cell to UV-induced 6-4PP lesions is to trigger an apoptotic program whereas the response of the cell to CPD lesions appears to principally involve cell cycle arrest. These findings suggest that CPD and 6-4 PP may induce differential biological effects in the UV-damaged cell
    • …
    corecore