255 research outputs found

    Impact of Oxygen Pressure on Ferroelectric Stability of La-doped Hafnia Grown by PLD

    Full text link
    Thin films of HfO2 doped with 4% La were fabricated on LSMO/STO (100) substrates using pulsed laser deposition. The stability of the ferroelectric orthorhombic phase in the hafnia films was investigated with respect to varying oxygen pressure during deposition. X-ray diffraction and X-ray photoelectron spectroscopy measurements were carried out to analyze the structure and composition of the films and correlated with their ferroelectric properties. Surprisingly, the ferroelectricity of the hafnia films showed a dependence on oxygen pressure during deposition of LSMO bottom electrode as well. The reason for this dependence is discussed in terms of the active role of non-lattice oxygen in the ferroelectric switching of hafnia

    Mechanical tension-stress induces expression of bone morphogenetic protein (BMP)-2 and BMP-4, but not BMP-6, BMP-7, and GDF-5 mRNA, during distraction osteogenesis. J Bone Miner Res

    Get PDF
    ABSTRACT Bone lengthening with osteotomy and gradual distraction was achieved in 57 rats, and the effect of mechanical tension-stress on gene expression of bone morphogenetic proteins (BMPs) was investigated by in situ hybridization and Northern blot analysis using probes of BMP-2, BMP-4, BMP-6, BMP-7, and growth/differentiation factor (GDF)-5. There was a lag phase for 7 days after femoral osteotomy until gradual distraction was carried out for 21 days at a rate of 0.25 mm/12 h using a small external fixator. The signals of the above BMPs mRNA were not detected in the intact rat bone but they were induced after osteotomy except those for BMP-7. By 4 days after osteotomy, BMP-2 and BMP-4 mRNAs were detected in chondrogenic precursor cells in the subperiosteal immature callus. BMP-6 and GDF-5 mRNA were detected in more differentiated cells in chondroid bone. By 7 days after osteotomy, cartilaginous external callus and bony endosteal callus were formed. Meanwhile, the signals of BMP-2 and BMP-4 mRNAs declined to preoperative levels, whereas the signals of BMP-6 and GDF-5 mRNAs were rather elevated. As distraction was started, the callus elongated and eventually separated into proximal and distal segments forming a fibrous interzone in the middle. Expression of BMP-2 and BMP-4 mRNAs was markedly induced at this stage. Their signals were detected widely among chondrogenic and osteogenic cells and their precursor cells sustaining mechanical tension-stress at the fibrous interzone. BMP-6 and GDF-5 mRNAs were detected exclusively in chondrogenic cells at both ends of the fibrous interzone, where endochondral ossification occurred. But neither mRNA was detected in terminally differentiated hypertrophic chondrocytes. As distraction advanced, the cartilage was progressively resorbed from both ends and new bone was formed directly by intramembranous ossification. There was no new cartilage formation in the advanced stage of distraction. The signals of BMP-6 and GDF-5 mRNA declined by this stage, while those of BMP-2 and BMP-4 were maintained at high level for as long as distraction was continued. After completion of distraction, the fibrous interzone fused and the lengthened segment was consolidated. BMP-2, BMP-4, BMP-6, nor GDF-5 was expressed at this stage. The signals of BMP-7 were not detected throughout the experiment. The present results suggest that excellent and uninterrupted bone formation during distraction osteogenesis owes to enhanced expression of BMP-2 and BMP-4 genes by mechanical tensionstress. Abundant gene products of BMP-2 and BMP-4 could induce in situ bone formation by paracrine and autocrin

    Terahertz wireless communication at 560-GHz band using Kerr micro-resonator soliton comb

    Full text link
    Terahertz (THz) waves have attracted attention as carrier waves for next-generation wireless communications (6G). Electronic THz emitters are widely used in current mobile communications; however, they may face technical limitations in 6G with upper-frequency limits. We demonstrate wireless communication in a 560-GHz band by using a photonic THz emitter based on photomixing of a 560-GHz-spacing soliton microcomb in a uni-travelling carrier photodiode together with a THz receiver of Schottky barrier diode. The on-off keying data transfer with 2-Gbit/s achieves a Q-factor of 3.4, thus, satisfying the limit of forward error correction.Comment: 17 pages, 4 figur

    Terahertz wireless communication in a 560-GHz band using a Kerr micro-resonator soliton comb

    Get PDF
    Terahertz (THz) waves have attracted attention as carrier waves for next-generation wireless communications (6 G). Electronic THz emitters are widely used in current mobile communications; however, they may face technical limitations in 6 G with upper-frequency limits. We demonstrate wireless communication in a 560-GHz band by using a photonic THz emitter based on photomixing of a 560-GHz-spacing soliton microcomb in a uni-travelling carrier photodiode together with a THz receiver of Schottky barrier diode. The on-off keying data transfer with 2-Gbit/s achieves a Q-factor of 3.4, thus, satisfying the limit of forward error correction

    Wireless data transmission in a 560-GHz band using low-phase-noise terahertz wave generated by photomixing of a pair of distributed feedback lasers injection-locking to Kerr micro-resonator soliton comb

    Full text link
    The demand for higher data rates in next-generation mobile wireless communication systems (6G) has led to significant interest in terahertz (THz) waves as a high-frequency, broad modulation bandwidth carrier wave. In this study, we propose and demonstrate a wireless data transfer in the 560-GHz band using low-phase-noise THz waves generated by photomixing of a pair of distributed feedback lasers injection-locking to Kerr micro-resonator soliton comb. Experimental results showed near-error-free on-off keying (OOK) data transfer at 1 Gbit/s in the 560-GHz band, with a Q-factor of 6.23, surpassing the error-free limit. Also, modulation formats of binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) were successfully used, showing clear constellation diagrams and relatively low root mean squared error vector magnitude (rms EVM) values of 23.9% and 23.6%, respectively. Moreover, data transfer at 0.4 Gbit/s in 16 quadrature amplitude modulation (16QAM) demonstrated clear isolated symbols and achieved a low rms EVM value of 8.1%, complying with the IEEE 802.15.3d standard amendment. These demonstrations highlight the potential of using injection-locked DFB lasers with the Kerr micro-resonator soliton comb to achieve high-quality, high-speed wireless data transfer in the 560-GHz band. These findings contribute significantly to the advancement of wireless communication technology in the THz frequency range and pave the way for the realization of 6G wireless communication systems
    corecore