74 research outputs found

    Biomechanical Analysis of a Pedicle Screw-Rod System with a Novel Cross-Link Configuration

    Get PDF
    Study DesignThe strength effects of a pedicle screw-rod system supplemented with a novel cross-link configuration were biomechanically evaluated in porcine spines.PurposeTo assess the biomechanical differences between a conventional cross-link pedicle screw-rod system versus a novel cross-link instrumentation, and to determine the effect of the cross-links.Overview of LiteratureTransverse cross-link systems affect torsional rigidity, but are thought to have little impact on the sagittal motion of spinal constructs. We tested the strength effects in pullout and flexion-compression tests of novel cross-link pedicle screw constructs using porcine thoracic and lumbar vertebrae.MethodsFive matched thoracic and lumbar vertebral segments from 15 porcine spines were instrumented with 5.0-mm pedicle screws, which were then connected with 6.0-mm rods after partial corpectomy in the middle vertebral body. The forces required for construct failure in pullout and flexion-compression tests were examined in a randomized manner for three different cross-link configurations: un-cross-link control, conventional cross-link, and cross-link passing through the base of the spinous process. Statistical comparisons of strength data were analyzed using Student's t-tests.ResultsThe spinous process group required a significantly greater pullout force for construct failure than the control group (p=0.036). No difference was found between the control and cross-link groups, or the cross-link and spinous process groups in pullout testing. In flexion-compression testing, the spinous processes group required significantly greater forces for construct failure than the control and cross-link groups (p<0.001 and p=0.003, respectively). However, there was no difference between the control and cross-link groups.ConclusionsA novel cross-link configuration that features cross-link devices passing through the base of the spinous processes increased the mechanical resistance in pullout and flexion-compression testing compared to un-cross-link constructs. This configuration provided more resistance to middle-column damage under flexion-compression testing than conventional cross-link configuration

    The Association of Postprandial Triglyceride Variability with Renal Dysfunction and Microalbuminuria in Patients with Type 2 Diabetic Mellitus: A Retrospective and Observational Study

    Get PDF
    Objective. We examined whether or not day-to-day variations in lipid profiles, especially triglyceride (TG) variability, were associated with the exacerbation of diabetic kidney disease. Methods. We conducted a retrospective and observational study. First, 527 patients with type 2 diabetes mellitus (DM) who had had their estimated glomerular filtration rate (eGFR) checked every 6 months since 2012 for over 5 years were registered. Variability in postprandial TG was determined using the standard deviation (SD), SD adjusted (Adj-SD) for the number of measurements, and maximum minus minimum difference (MMD) during the first three years of follow-up. The endpoint was a & GE;40% decline from baseline in the eGFR, initiation of dialysis or death. Next, 181 patients who had no micro- or macroalbuminuria in February 2013 were selected from among the 527 patients for an analysis. The endpoint was the incidence of microalbuminuria, initiation of dialysis, or death. Results. Among the 527 participants, 110 reached a & GE;40% decline from baseline in the eGFR or death. The renal survival was lower in the higher-SD, higher-Adj-SD, and higher-MMD groups than in the lower-SD, lower-Adj-SD, and lower-MMD groups, respectively (log-rank test p=0.0073, 0.0059, and 0.0195, respectively). A lower SD, lower Adj-SD, and lower MMD were significantly associated with the renal survival in the adjusted model (hazard ratio, 1.62, 1.66, 1.59; 95% confidence intervals, 1.05-2.53, 1.08-2.58, 1.04-2.47, respectively). Next, among 181 participants, 108 developed microalbuminuria or death. The nonincidence of microalbuminuria was lower in the higher-SD, higher-Adj-SD, and higher-MMD groups than in the lower-SD, lower-Adj-SD, and lower-MMD groups, respectively (log-rank test p=0.0241, 0.0352, and 0.0474, respectively). Conclusions. Postprandial TG variability is a novel risk factor for eGFR decline and the incidence of microalbuminuria in patients with type 2 DM

    胸腰椎疾患周術期における上殿皮神経障害の検討

    No full text

    Effect of Brønsted Acidity on Ion Conduction in Fluorinated Acetic Acid and N-Methylimidazole Equimolar Mixtures as Pseudo-protic Ionic Liquids

    No full text
    To clarify proton conduction mechanism in protic ionic liquids (PILs) and pseudo-PILs (pPILs), equimolar mixtures of N-methylimidazole (C(1)Im) with fluorinated acetic acids were investigated by Raman spectroscopy, X-ray scattering, and dielectric relaxation spectroscopy (DRS). Only the ionic species exist in the equimolar mixture of C(1)Im and HTFA (HTFA: trifluoroacetic acid). On the other hand, the equimolar mixture of C(1)Im and HDFA (HDFA: difluoroacetic acid) consists of both ionic and electrically neutral species. In particular, not only the electrostatic but also van der Waals interactions with the F atoms were observed in the liquid structures of both [C(1)hIm(+)][TFA(-)] and [C(1)hIm(+)][DFA(-)]. The concept for proton conduction mechanism that we have proposed in previous study was revisited; the proton conduction mechanism could be classified with two linear free energy relationship lines for proton exchange reaction and translation/rotation of proton carriers. Our results exhibit that the proton conduction mechanism changes from proton hopping to vehicle mechanism with increasing acidity of an acid HA in PILs
    corecore