88 research outputs found

    Dephasing due to background charge fluctuations

    Full text link
    In quantum computation, quantum coherence must be maintained during gate operation. However, in physical implementations, various couplings with the environment are unavoidable and can lead to a dephasing of a quantum bit(qubit). The background charge fluctuations are an important dephasing process, especially in a charge qubit system. We examined the dephasing rate of a qubit due to random telegraph noise. Solving stochastic differential equations, we obtained the dephasing rate of a qubit constructed of a coupled-dot system; we applied our results to the charge Josephson qubit system. We examined the dephasing rates due to two types of couplings between the coupled-dot system and the background charge, namely, fluctuation in the tunnel coupling constant and fluctuation in the asymmetric bias. For a strong coupling condition, the dephasing rate was inversely proportional to the time constant of the telegraph noise. When there is fluctuation in the tunnel coupling constant, Gaussian decay occurs in the initial regime. We also examined the rate of dephasing due to many impurity sites. For a weak coupling condition with fluctuation in the asymmetric bias, the obtained dephasing rate coincided with that obtained by the perturbation method using the spectral weight of a boson thermal bath, which is proportional to the inverse of the frequency.Comment: 10 pages, 6 figures, RevTeX, to be published in Phys. Rev.

    Power dependence of electric dipole spin resonance

    Full text link
    We develop a formalism of electric dipole spin resonance (EDSR) based on slanting magnetic field, where we especially investigate the microwave amplitude dependence. With increasing microwave amplitude, the Rabi frequency increases linearly for a spin confined in a harmonic potential. How- ever, when the spin is confined in the double-well potential, the Rabi frequency shows sub-linear dependence with increasing the microwave amplitude.Comment: 4 pages, conference paper of APPC1
    • …
    corecore