182 research outputs found
The Hasse norm principle for some non-Galois extensions of square-free degree
In this paper, we study the Hasse norm principle for some non-Galois
extensions of number fields. Our main theorem is that for any square-free
composite number which is divisible by at least one of , , or
, there exists a finite extension of degree for which the Hasse norm
principle fails. To accomplish it, we determine the structure of the
Tate--Shafarevich groups of norm one tori for finite extensions of degree
under the normality of -Sylow subgroups of the Galois groups of their Galois
closures for a square-free prime factor of . Moreover, we reduce the
assertion to an investigation of -dimensional -representations
of some groups of order coprime to .Comment: 39pages, comments are welcom
Cohomological properties of multinorm-one tori
In this paper we investigate the Tate--Shafarevich group Sha^1(k, T) of a
multinorm-one torus over a global field . We establish a few functorial
maps among cohomology groups and explore their relations. Using these
properties and relations we obtain a few basic structural results for Sha^1(k,
T) and extend a few results of Bayer-Fluckiger--Lee--Parimala [Adv. in Math.,
2019] to some more general multinorm-one tori. We also give a uniform proof of
a result of Demarche--Wei for a criterion of the vanishing of Sha^1(k, T), and
of the main result of Pollio [Pure App. Math. Q., 2014] for the case where the
\'etale -algebra in question is a product of two abelian extensions.
Moreover, we improve the explicit description of Sha^1(k, T) in Lee [J. Pure
Appl. Alg., 2022] by removing an intersection condition.Comment: 26 pages, comments welcom
Simultaneous Improvements in Performance and Durability of an Octahedral PtNix/C Electrocatalyst for Next-Generation Fuel Cells by Continuous, Compressive, and Concave Pt Skin Layers
Simultaneous improvements in oxygen reduction reaction (ORR) activity and long-term durability of Pt-based cathode catalysts are indispensable for the development of next-generation polymer electrolyte fuel cells but are still a major dilemma. We present a robust octahedral core–shell PtNix/C electrocatalyst with high ORR performance (mass activity and surface specific activity 6.8–16.9 and 20.3–24.0 times larger than those of Pt/C, respectively) and durability (negligible loss after 10000 accelerated durability test (ADT) cycles). The key factors of the robust octahedral nanostructure (core–shell Pt73Ni27/C) responsible for the remarkable activity and durability were found to be three continuous Pt skin layers with 2.0–3.6% compressive strain, concave facet arrangements (concave defects and high coordination), a symmetric Pt/Ni distribution, and a Pt67Ni33 intermetallic core, as found by STEM-EDS, in situ XAFS, XPS, etc. The robust core–shell Pt73Ni27/C was produced by the partial release of the stress, Pt/Ni rearrangement, and dimension reduction of an as-synthesized octahedral Pt50Ni50/C with 3.6–6.7% compressive Pt skin layers by Ni leaching during the activation process. The present results on the tailored synthesis of the PtNix structure and composition and the better control of the robust catalytic architecture renew the current knowledge and viewpoint for instability of octahedral PtNix/C samples to provide a new insight into the development of next-generation PEFC cathode catalysts
In situ study of oxidation states of platinum nanoparticles on a polymer electrolyte fuel cell electrode by near ambient pressure hard X-ray photoelectron spectroscopy
We performed in situ hard X-ray photoelectron spectroscopy (HAXPES) measurements of the electronic states of platinum nanoparticles on the cathode electrocatalyst of a polymer electrolyte fuel cell (PEFC) using a near ambient pressure (NAP) HAXPES instrument having an 8 keV excitation source. We successfully observed in situ NAP-HAXPES spectra of the Pt/C cathode catalysts of PEFCs under working conditions involving water, not only for the Pt 3d states with large photoionization cross-sections in the hard X-ray regime but also for the Pt 4f states and the valence band with small photoionization cross-sections. Thus, this setup allowed in situ observation of a variety of hard PEFC systems under operating conditions. The Pt 4f spectra of the Pt/C electrocatalysts in PEFCs clearly showed peaks originating from oxidized Pt(II) at 1.4 V, which unambiguously shows that Pt(IV) species do not exist on the Pt nanoparticles even at such large positive voltages. The water oxidation reaction might take place at that potential (the standard potential of 1.23 V versus a standard hydrogen electrode) but such a reaction should not lead to a buildup of detectable Pt(IV) species. The voltage-dependent NAP-HAXPES Pt 3d spectra revealed different behaviors with increasing voltage (0.6 → 1.0 V) compared with decreasing voltage (1.0 → 0.6 V), showing a clear hysteresis. Moreover, quantitative peak-fitting analysis showed that the fraction of non-metallic Pt species matched the ratio of the surface to total Pt atoms in the nanoparticles, which suggests that Pt oxidation only takes place at the surface of the Pt nanoparticles on the PEFC cathode, and the inner Pt atoms do not participate in the reaction. In the valence band spectra, the density of electronic states near the Fermi edge reduces with decreasing particle size, indicating an increase in the electrocatalytic activity. Additionally, a change in the valence band structure due to the oxidation of platinum atoms was also observed at large positive voltages. The developed apparatus is a valuable in situ tool for the investigation of the electronic states of PEFC electrocatalysts under working conditions
Key Structural Transformations and Kinetics of Pt Nanoparticles in PEFC Pt/C Electrocatalysts by a Simultaneous Operando Time-Resolved QXAFS–XRD Technique
This account article treats with the key structural transformations and kinetics of Pt nanoparticles in Pt/C cathode catalysts under transient voltage operations (0.4 VRHE→1.4 VRHE→0.4 VRHE) by simultaneous operando time-resolved QXAFS–XRD measurements, summarizing and analyzing our previous kinetic data in more detail and discussing on the key reaction steps and rate constants for the performance and durability of polymer electrolyte fuel cells (PEFC). The time-resolved QXAFS–XRD measurements were conducted at each acquisition time of 20 ms, while measuring the current/charge of the PEFC. The rate constants for the transient responses of Pt valence, CN(Pt–O) (CN: coordination number), CN(Pt–Pt), and Pt metallic-phase core size under the transient voltage operations were determined by the combined time-resolved QXAFS‒XRD technique. The relationship of the structural kinetics with the performance and durability of the PEFC Pt/C was also documented as key issues for the development of next-generation PEFCs. The present account emphasizes the time-resolved QXAFS and XRD techniques to be a powerful technique to analyze directly the structural and electronic change of metal nanoparticles inside PEFC under the operating conditions
Prognostic significance of serum B-lymphocyte stimulator level in Hodgkin’s lymphoma
B-lymphocyte stimulator (BLyS) plays a critical role in the survival of B-lymphocytes. In 50 patients with Hodgkin’s lymphoma BLyS levels were higher in newly diagnosed patients (median 2.0 ng/mL, rang
Observation of Degradation of Pt and Carbon Support in Polymer Electrolyte Fuel Cell Using Combined Nano-X-ray Absorption Fine Structure and Transmission Electron Microscopy Techniques
It is hard to directly visualize spectroscopic and atomic–nanoscopic information on the degraded Pt/C cathode layer inside polymer electrolyte fuel cell (PEFC). However, it is mandatory to understand the preferential area, sequence, and relationship of the degradations of Pt nanoparticles and carbon support in the Pt/C cathode layer by directly observing the Pt/C cathode catalyst for the development of next-generation PEFC cathode catalysts. Here, the spectroscopic, chemical, and morphological visualization of the degradation of Pt/C cathode electrocatalysts in PEFC was performed successfully by a same-view combination technique of nano-X-ray absorption fine structure (XAFS) and transmission electron microscopy (TEM)/scanning TEM–energy-dispersive spectrometry (EDS) under a humid N2 atmosphere. The same-view nano-XAFS and TEM/STEM–EDS imaging of the Pt/C cathode of PEFC after triangular-wave 1.0–1.5 VRHE (startup/shutdown) accelerated durability test (tri-ADT) cycles elucidated the site-selective area, sequence, and relationship of the degradations of Pt nanoparticles and carbon support in the Pt/C cathode layer. The 10 tri-ADT cycles caused a carbon corrosion to reduce the carbon size preferentially in the boundary regions of the cathode layer with both electrolyte and holes/cracks, accompanied with detachment of Pt nanoparticles from the degraded carbon. After the decrease in the carbon size to less than 8 nm by the 20 tri-ADT cycles, Pt nanoparticles around the extremely corroded carbon areas were found to transform and dissolve into oxidized Pt2+–O4 species
- …