74 research outputs found

    Foreword

    Get PDF

    Dynamics of the boundary layer created by the explosion of a dense object in an ambient dilute gas triggered by a high power laser

    Get PDF
    The dynamics of the boundary layer in between two distinct collisionless plasmas created by the interaction between a dense object modeling a cluster and a short laser pulse in the presence of an ambient gas is studied with two dimensional relativistic particle-in-cell simulations, which are found to be described by three successive processes. In the first phase, a collisionless electrostatic shock wave, launched near the cluster expansion front, reflects the ambient gas ions at a contact surface as a moving wall, which allows a particle acceleration with a narrower energy spread. In the second phase, the contact surface disappears and the compressed surface of the ambient gas ions passes over the shock potential, forming an overlapping region between the cluster expansion front and the compressed surface of the ambient gas. Here, another type of nonlinear wave is found to be evolved, leading to a relaxation of the shock structure, while continuing to reflect the ambient gas ions. The nonlinear wave exhibits a bipolar electric field structure that is sustained for a long timescale coupled with slowly evolving ion dynamics, suggesting that a quasistationary kinetic equilibrium dominated by electron vortices in the phase space is established. In the third phase, a rarefaction wave is triggered and evolves at the compressed surface of ambient gas. This is because some of the ambient gas ions tend to pass over the potential of the bipolar electric field. Simultaneously, a staircase structure, i.e., a kind of internal shock, is formed in the cluster due to the deceleration of cluster ions. Such structure formations and successive dynamics accompanied by the transitions from the shock wave phase through the overlapping phase to the rarefaction wave phase are considered to be a unique nature at the boundary layer created by an explosion of a dense plasma object in an ambient dilute plasma

    Multi-scale interactions between turbulence and magnetohydrodynamic instability driven by energetic particles

    Get PDF
    In order to realize high performance burning plasmas in magnetic-confinement fusion devices, such as tokamaks, both bulk plasma transport and that of energetic fusion alpha-particles, which result from different scale fluctuations with different free energy sources, have to be reduced simultaneously. Utilizing the advantage of global toroidal non-linear simulations covering a whole torus, here, we found a new coupling mechanism between the low-frequency micro-scale electromagnetic drift-wave fluctuations regulating the former, while the high-frequency macro-scale toroidal Alfven eigenmode (TAE) regulates the latter. This results from the dual spread of micro-scale turbulence due to the macro-scale TAE not only in wavenumber space representing local eddy size but also in configuration space with global profile variations. Consequently, a new class of turbulent state is found to be established, where the turbulence is homogenized on the poloidal cross-section with exhibiting large-scale structure, which increases fluctuation levels and then both transports, leading to deterioration in the fusion performance

    Quasilinear analysis of the zonal flow back-reaction on ion-temperature-gradient mode turbulence

    Full text link
    There is strong evidence in favor for zonal flow suppression of the Ion-Temperature-Gradient (ITG) mode turbulence, specifically close to the linear stability threshold. The present letter attempts to analytically calculate the effects of zonal flow suppression of the ITG turbulence through deriving a modified dispersion relation including the back-reaction of the zonal flows on the ITG turbulence based on the quasilinear theory. The results are manifested in a reduction of the linear growth rate and an increase in the effective linear ITG threshold.Comment: 15 pages, 3 figure

    Laser-driven multi-MeV high-purity proton acceleration via anisotropic ambipolar expansion of micron-scale hydrogen clusters

    Get PDF
    強力なレーザーを使ってエネルギーがそろった純度100%の陽子ビーム発生に成功 --レーザー駆動陽子ビーム加速器の実現へ向けて大きく前進--. 京都大学プレスリリース. 2022-10-13.Multi-MeV high-purity proton acceleration by using a hydrogen cluster target irradiated with repetitive, relativistic intensity laser pulses has been demonstrated. Statistical analysis of hundreds of data sets highlights the existence of markedly high energy protons produced from the laser-irradiated clusters with micron-scale diameters. The spatial distribution of the accelerated protons is found to be anisotropic, where the higher energy protons are preferentially accelerated along the laser propagation direction due to the relativistic effect. These features are supported by three-dimensional (3D) particle-in-cell (PIC) simulations, which show that directional, higher energy protons are generated via the anisotropic ambipolar expansion of the micron-scale clusters. The number of protons accelerating along the laser propagation direction is found to be as high as 1.6 ±0.3 × 10⁹/MeV/sr/shot with an energy of 2.8 ±1.9 MeV, indicating that laser-driven proton acceleration using the micron-scale hydrogen clusters is promising as a compact, repetitive, multi-MeV high-purity proton source for various applications

    A novel biomarker TERTmRNA is applicable for early detection of hepatoma

    Get PDF
    <p>Abstract</p> <p>Backgrounds</p> <p>We previously reported a highly sensitive method for serum human telomerase reverse transcriptase (hTERT) mRNA for hepatocellular carcinoma (HCC). α-fetoprotein (AFP) and des-γ-carboxy prothrombin (DCP) are good markers for HCC. In this study, we verified the significance of hTERTmRNA in a large scale multi-centered trial, collating quantified values with clinical course.</p> <p>Methods</p> <p>In 638 subjects including 303 patients with HCC, 89 with chronic hepatitis (CH), 45 with liver cirrhosis (LC) and 201 healthy individuals, we quantified serum hTERTmRNA using the real-time RT-PCR. We examined its sensitivity and specificity in HCC diagnosis, clinical significance, ROC curve analysis in comparison with other tumor markers, and its correlations with the clinical parameters using Pearson relative test and multivariate analyses. Furthermore, we performed a prospective and comparative study to observe the change of biomarkers, including hTERTmRNA in HCC patients receiving anti-cancer therapies.</p> <p>Results</p> <p>hTERTmRNA was demonstrated to be independently correlated with clinical parameters; tumor size and tumor differentiation (P < 0.001, each). The sensitivity/specificity of hTERTmRNA in HCC diagnosis showed 90.2%/85.4% for hTERT. hTERTmRNA proved to be superior to AFP, AFP-L3, and DCP in the diagnosis and underwent an indisputable change in response to therapy. The detection rate of small HCC by hTERTmRNA was superior to the other markers.</p> <p>Conclusions</p> <p>hTERTmRNA is superior to conventional tumor markers in the diagnosis and recurrence of HCC at an early stage.</p

    Higher-Order Nonlocal Effects of a Relativistic Ponderomotive Force in High-Intensity Laser Fields

    Get PDF
    We have developed a new formula for a relativistic ponderomotive force of transversely localized laser fields based on the noncanonical Lie perturbation method by finding proper coordinates and gauges in the variational principle. The formula involves new terms represented by second and third spatial derivatives of the field amplitude, so that the ponderomotive force depends not only on the local field gradient, but also on the curvature and its variation. The formula is then applicable to a regime in which the conventional formula is hardly applied such that nonlocal and/or global extent of the field profile becomes important. The result can provide a theoretical basis for describing nonlinear laser-plasma interaction including such nonlocal effects, which is examined via particle-in-cell simulation of laser propagation in a plasma with a super Gaussian transverse field profile

    Nonlocal Ponderomotive Force in a Super Gaussian Laser Beam and the Conditions for Long Time Scale Interaction

    No full text

    Cross-scale Dynamo Action in Multiscale Plasma Turbulence

    No full text
    corecore