29 research outputs found

    Insulin Use in Type II Diabetic Patients: A Predictive of Mortality in Covid-19 Infection

    No full text
    INTRODUCTION: Starting December 2019, the world has been devastated by the rapid spread of coronavirus disease 2019 (Covid-19). Many risk factors have been associated with worse outcomes and death from Covid-19 pneumonia including having diabetes mellitus. To date, it is not clear if all group of diabetics share the same risk of complications with COVID-19 infection. This study aims to compare disease severity and mortality rate in insulin users versus non-insulin users. METHODS: In this retrospective case–control study conducted at the largest health care network in New York state, we included adult, diabetic patients admitted from March 2020 to October 2020 with Covid-19 pneumonia. We compared the baseline characteristics in addition to outcomes of diabetic patients on home insulin (cases) and non-insulin user diabetics (controls). In addition, to determine if home insulin use is associated with an increased mortality, we conducted a cox regression analysis. RESULTS: We included 696 patients in the study period with a median age of 57 years, interquartile range [IQR] 51–62, and median body mass index 29.9 (IQR: 26–34.7). The majority (476 [68%]) were males. We identified 227 cases (33%) and 469 controls (67%). More cases than controls were hypertensive (74% vs 67%, p = 0.03), on ACE/ARB (50% vs 42%, p = 0.05), and had a hemoglobin A1c > 8.1 (71% vs 44%, p < 0.001). More cases had AKI (52% vs 38%, p < 0.001), however no significant differences were found in intubation rates (26% vs 24%, p = 0.54), detection of pulmonary embolism (4% vs 6%, p = 0.19) or death rate (15% vs 11%, p = 0.22) comparing cases and controls. In a multivariate analysis, we found that home insulin use was independently associated with increased risk of death: Hazard ratio: 1.92, 95% confidence interval (1.13–3.23). CONCLUSION: We showed herein that diabetic patients on home insulin with COVID-19 pneumonia, have worse outcomes and increased mortality compared to diabetics on oral antihyperglycemic agents. Close monitoring of insulin-dependent type II diabetic patients is needed in the current pandemic

    Evaluating Permeable Clay Brick Pavement for Pollutant Removal from Varying Strength Stormwaters in Arid Regions

    No full text
    Permeable pavement is a low impact development technology for stormwater (SW) runoff control and pollutant removal. The strength of SW depends on land use of the catchment, e.g., semi-urban vs. industrial. The performance (in terms of pollutants removal) of permeable clay bricks (PCB) has not been adequately assessed for SW of varying strengths. For using the permeable clay bricks as a pavement surface layer, the present research investigates its pollutant removal capacity through SW infiltration using a laboratory setup. SW samples of two different strengths, i.e., high polluted stormwater (HPSW) and less polluted stormwater (LPSW), were tested for a pavement system consisting of the clay brick layer on top of a coarse gravel support layer. The tests were performed at a rainfall intensity of 12.5 mm/h (for a 10-year return period in Buraidah, Qassim) to evaluate the suitability of PCB for the arid and semi-arid regions. The experiments revealed that PCB became fully saturated and achieved a steady-state outflow condition after 10 min of rainfall. Irrespective of contamination level, the pollutant removal efficiency was found to be similar for both HPSW and LPSW. High TSS (>98%) and turbidity (>99%) removals were achieved for both strengths, while BOD5 (78.4%) and COD (76.1%) removals were moderate. Poor to moderate nutrient removal, 30.5% and 39.1% for total nitrogen (TN) and 34.7% and 31.3% for total phosphorus (TP), respectively for HPSW and LPSW, indicates an adsorptive removal of nutrients in the system. Heavy metal removal efficiency ranged from 6.7% to 94%, with higher removals archived for Fe, Mn, Se, and Pb. The study provides insights into the role of PCB as a surface layer in the permeable pavement for pollutant removal. The study also establishes the guidelines for the optimal permeable pavement design to deal with SW of varying contamination levels. Permeable clay bricks showed the potential to be used as a sustainable LID technology for arid regions

    Development, characterization, and evaluation of α-mangostin-loaded polymeric nanoparticle gel for topical therapy in skin cancer

    No full text
    The aim of this study was to prepare and evaluate α-mangostin-loaded polymeric nanoparticle gel (α-MNG-PLGA) formulation to enhance α-mangostin delivery in an epidermal carcinoma. The poly (D, L-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) were developed using the emulsion–diffusion–evaporation technique with a 3-level 3-factor Box–Behnken design. The NPs were characterized and evaluated for particle size distribution, zeta potential (mV), drug release, and skin permeation. The formulated PLGA NPs were converted into a preformed carbopol gel base and were further evaluated for texture analysis, the cytotoxic effect of PLGA NPs against B16-F10 melanoma cells, and in vitro radical scavenging activity. The nanoscale particles were spherical, consistent, and average in size (168.06 ± 17.02 nm), with an entrapment efficiency (EE) of 84.26 ± 8.23% and a zeta potential of −25.3 ± 7.1 mV. Their drug release percentages in phosphate-buffered solution (PBS) at pH 7.4 and pH 6.5 were 87.07 ± 6.95% and 89.50 ± 9.50%, respectively. The release of α-MNG from NPs in vitro demonstrated that the biphasic release system, namely, immediate release in the initial phase, was accompanied by sustained drug release. The texture study of the developed α-MNG-PLGA NPs gel revealed its characteristics, including viscosity, hardness, consistency, and cohesiveness. The drug flux from α-MNG-PLGA NPs gel and α-MNG gel was 79.32 ± 7.91 and 16.88 ± 7.18 µg/cm2/h in 24 h, respectively. The confocal study showed that α-MNG-PLGA NPs penetrated up to 230.02 µm deep into the skin layer compared to 15.21 µm by dye solution. MTT assay and radical scavenging potential indicated that α-MNG-PLGA NPs gel had a significant cytotoxic effect and antioxidant effect compared to α-MNG gel (p < 0.05). Thus, using the developed α-MNG-PLGA in treating skin cancer could be a promising approach

    Development and Evaluation of <i>Ginkgo biloba</i>/Sodium Alginate Nanocomplex Gel as a Long-Acting Formulation for Wound Healing

    No full text
    The aim of the study was to develop and evaluate the Ginkgo biloba nanocomplex gel (GKNG) as a long-acting formulation for the wound healing potential. Pharmaceutical analysis showed an average particle size of 450.14 ± 36.06 nm for GKNG, zeta potential +0.012 ± 0.003 mV, and encapsulation efficiency 91 ± 1.8%. The rheological analysis also showed the optimum diffusion rate and viscosity needed for topical drug delivery. Fourier transform infrared spectroscopy (FTIR), powder X-ray diffractometry (PXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analysis further confirmed the success of GKNG. The in vivo study showed increments in the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) and a lower level of lipid peroxidation (MDA) after GKNG treatment. The GKNG group showed upregulations in collagen type I, as alpha 1 collagen (COL1A1), and collagen type IV, as alpha 1 collagen (COL4A1). Furthermore, the in vivo study showed increments in hydroxyproline, epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), and transforming growth factor-beta 1 (TGF-β1) after the GKNG. Additionally, GKNG effectively increased the wound contraction compared to GK gel and sodium alginate (SA) gel. Based on the in vitro and in vivo evaluation, GKNG effectively accelerated wound healing by modulation of antioxidant enzymes, collagens, angiogenic factors, and TGF-β1
    corecore