22 research outputs found
GeneTrail—advanced gene set enrichment analysis
We present a comprehensive and efficient gene set analysis tool, called ‘GeneTrail’ that offers a rich functionality and is easy to use. Our web-based application facilitates the statistical evaluation of high-throughput genomic or proteomic data sets with respect to enrichment of functional categories. GeneTrail covers a wide variety of biological categories and pathways, among others KEGG, TRANSPATH, TRANSFAC, and GO. Our web server provides two common statistical approaches, ‘Over-Representation Analysis’ (ORA) comparing a reference set of genes to a test set, and ‘Gene Set Enrichment Analysis’ (GSEA) scoring sorted lists of genes. Besides other newly developed features, GeneTrail's statistics module includes a novel dynamic-programming algorithm that improves the P-value computation of GSEA methods considerably. GeneTrail is freely accessible at http://genetrail.bioinf.uni-sb.d
Pretubulysin: From Hypothetical Biosynthetic Intermediate to Potential Lead in Tumor Therapy
Pretubulysin is a natural product that is found in strains of myxobacteria in only minute amounts. It represents the first enzyme-free intermediate in the biosynthesis of tubulysins and undergoes post-assembly acylation and oxidation reactions. Pretubulysin inhibits the growth of cultured mammalian cells, as do tubulysins, which are already in advanced preclinical development as anticancer and antiangiogenic agents. The mechanism of action of this highly potent compound class involves the depolymerization of microtubules, thereby inducing mitotic arrest. Supply issues with naturally occurring derivatives can now be circumvented by the total synthesis of pretubulysin, which, in contrast to tubulysin, is synthetically accessible in gram-scale quantities. We show that the simplified precursor is nearly equally potent to the parent compound. Pretubulysin induces apoptosis and inhibits cancer cell migration and tubulin assembly in vitro. Consequently, pretubulysin appears to be an ideal candidate for future development in preclinical trials and is a very promising early lead structure in cancer therapy
Investigations to the Antibacterial Mechanism of Action of Kendomycin.
The emergence of bacteria that are resistant to many currently used drugs emphasizes the need to discover and develop new antibiotics that are effective against such multi-resistant strains. Kendomycin is a novel polyketide that has a unique quinone methide ansa structure and various biological properties. This compound exhibits strong antibacterial activity against Gram-negative and Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). Despite the promise of kendomycinin in several therapeutic areas, its mode of action has yet to be identified
Characteristics, chemical compositions and biological activities of propolis from Al-Bahah, Saudi Arabia.
Propolis has been used to treat several diseases since ancient times, and is an important source of bioactive natural compounds and drug derivatives. These properties have kept the interest of investigators around the world, leading to the investigation of the chemical and biological properties and application of propolis. In this report, the chemical constituents that are responsible for the anticancer activities of propolis were analyzed. The propolis was sourced from Al-Baha in the southern part of the Kingdom of Saudi Arabia. Standard protocols for chemical fractionation and bioactivity-guided chemical analysis were used to identify the bio-active ethyl acetate fraction. The extraction was performed in methanol and then analyzed by gas chromatography-mass spectrometry (GC-MS). The major compounds are triterpenoids, with a relative concentration of 74.0%; steroids, with a relative concentration of 9.8%; and diterpenoids, with a relative concentration of 7.9%. The biological activity was characterized using different approaches and cell-based assays. Propolis was found to inhibit the proliferation of cancer cells in a concentration-dependent manner through apoptosis. Immunofluorescence staining with anti-α-tubulin antibodies and cell cycle analysis indicated that tubulin and/or microtubules are the cellular targets of the L-acetate fraction. This study demonstrates the importance of Saudi propolis as anti-cancer drug candidates
Allethrin Promotes Apoptosis and Autophagy Associated with the Oxidative Stress-Related PI3K/AKT/mTOR Signaling Pathway in Developing Rat Ovaries
The increased concern regarding the reduction in female fertility and the impressive numbers of women undergoing fertility treatment support the existence of environmental factors beyond inappropriate programming of developing ovaries. Among these factors are pyrethroids, which are currently some of the most commonly used pesticides worldwide. The present study was performed to investigate the developmental effects of the pyrethroid-based insecticide allethrin on ovarian function in rat offspring in adulthood. We mainly focused on the roles of oxidative stress, apoptosis, autophagy and the related pathways in ovarian injury. Thirty-day-old Wistar albino female rats were intragastrically administered 0 (control), 34.2 or 68.5 mg/kg body weight allethrin after breeding from Day 6 of pregnancy until delivery. We found that allethrin-induced ovarian histopathological damage was accompanied by elevations in oxidative stress and apoptosis. Interestingly, the number of autophagosomes in allethrin-treated ovaries was higher, and this increase was correlated with the upregulated expression of genes and proteins related to the autophagic marker LC-3. Furthermore, allethrin downregulated the expression of PI3K, AKT and mTOR in allethrin-treated ovaries compared with control ovaries. Taken together, the findings of this study suggest that exposure to the pyrethroid-based insecticide allethrin adversely affects both the follicle structure and function in rat offspring during adulthood. Specifically, allethrin can induce excessive oxidative stress and defective autophagy-related apoptosis, probably through inactivation of the PI3K/AKT/mTOR signaling pathway, and these effects may contribute to ovarian dysfunction and impaired fertility in female offspring
Efforts in Bioprospecting Research: A Survey of Novel Anticancer Phytochemicals Reported in the Last Decade
Bioprospecting natural products to find prominent agents for medical application is an area of scientific endeavor that has produced many clinically used bioactive compounds, including anticancer agents. These compounds come from plants, microorganisms, and marine life. They are so-called secondary metabolites that are important for a species to survive in the hostile environment of its respective ecosystem. The kingdom of Plantae has been an important source of traditional medicine in the past and is also enormously used today as an exquisite reservoir for detecting novel bioactive compounds that are potent against hard-to-treat maladies such as cancer. Cancer therapies, especially chemotherapies, are fraught with many factors that are difficult to manage, such as drug resistance, adverse side effects, less selectivity, complexity, etc. Here, we report the results of an exploration of the databases of PubMed, Science Direct, and Google Scholar for bioactive anticancer phytochemicals published between 2010 and 2020. Our report is restricted to new compounds with strong-to-moderate bioactivity potential for which mass spectroscopic structural data are available. Each of the phytochemicals reported in this review was assigned to chemical classes with peculiar anticancer properties. In our survey, we found anticancer phytochemicals that are reported to have selective toxicity against cancer cells, to sensitize MDR cancer cells, and to have multitarget effects in several signaling pathways. Surprisingly, many of these compounds have limited follow-up studies. Detailed investigations into the synthesis of more functional derivatives, chemical genetics, and the clinical relevance of these compounds are required to achieve safer chemotherapy
Effect of kendomycin on the cell division in <i>S</i>. <i>aureus</i> COL.
<p>Electron microscopic images of healthy control cells (A, B) and kendomycin treated cells (C-F). (A) Dividing control cells at the mid of septum formation. (B) Dividing cells with a completed septum. (C-F)Kendomycin treated cells exhibiting irregular septum morphologies. Bar = 200 nm.</p
Glucose and acetate contents in the supernatants of growing <i>S</i>. <i>aureus</i> COL cultures.
<p>A) Consumption of glucose in the presence (●) and absence (■) of kendomycin. B) Accumulation/consumption of acetate in the presence (●) and absence (■) of kendomycin. Arrows indicate the addition of kendomycin. The data presented are the mean ± SD of three independent experiments.</p