44 research outputs found

    Effect of sweet almond syrup versus methylphenidate in children with ADHD: A randomized triple-blind clinical trial

    Get PDF
    Background and purpose: Attention-deficit/hyperactivity disorder (ADHD) is one of the most common health disorders among children. Some patients do not respond to methylphenidate or cannot tolerate its side effects. Sweet almond syrup as a Persian Medicine preparation has been used for many years. This study aims to evaluate the efficacy and safety of sweet almond for ADHD children. Materials and methods: Fifty children aged 6-14 years with ADHD were recruited to the study. The participants were randomly assigned to two groups to receive either methylphenidate or sweet almond syrup. The outcomes were assessed using the Parent and Teacher ADHD Rating Scale every two weeks for 8 weeks. Results: Results showed that the two treatments had similar effects on symptom reduction in ADHD children. No significant differences were observed between the two groups (F=2.3, df=1, p=0.13, F=0.57, df=1, p=0.47). Conclusion: Sweet almond may be an effective treatment for ADHD children. © 2019 Elsevier Lt

    Adverse drug events caused by three high-risk drug–drug interactions in patients admitted to intensive care units:A multicentre retrospective observational study

    Get PDF
    Aims: Knowledge about adverse drug events caused by drug–drug interactions (DDI-ADEs) is limited. We aimed to provide detailed insights about DDI-ADEs related to three frequent, high-risk potential DDIs (pDDIs) in the critical care setting: pDDIs with international normalized ratio increase (INR+) potential, pDDIs with acute kidney injury (AKI) potential, and pDDIs with QTc prolongation potential. Methods: We extracted routinely collected retrospective data from electronic health records of intensive care units (ICUs) patients (≥18 years), admitted to ten hospitals in the Netherlands between January 2010 and September 2019. We used computerized triggers (e-triggers) to preselect patients with potential DDI-ADEs. Between September 2020 and October 2021, clinical experts conducted a retrospective manual patient chart review on a subset of preselected patients, and assessed causality, severity, preventability, and contribution to ICU length of stay of DDI-ADEs using internationally prevailing standards. Results: In total 85 422 patients with ≥1 pDDI were included. Of these patients, 32 820 (38.4%) have been exposed to one of the three pDDIs. In the exposed group, 1141 (3.5%) patients were preselected using e-triggers. Of 237 patients (21%) assessed, 155 (65.4%) experienced an actual DDI-ADE; 52.9% had severity level of serious or higher, 75.5% were preventable, and 19.3% contributed to a longer ICU length of stay. The positive predictive value was the highest for DDI-INR+ e-trigger (0.76), followed by DDI-AKI e-trigger (0.57). Conclusion: The highly preventable nature and severity of DDI-ADEs, calls for action to optimize ICU patient safety. Use of e-triggers proved to be a promising preselection strategy.</p

    Adverse drug events caused by three high-risk drug–drug interactions in patients admitted to intensive care units:A multicentre retrospective observational study

    Get PDF
    Aims: Knowledge about adverse drug events caused by drug–drug interactions (DDI-ADEs) is limited. We aimed to provide detailed insights about DDI-ADEs related to three frequent, high-risk potential DDIs (pDDIs) in the critical care setting: pDDIs with international normalized ratio increase (INR+) potential, pDDIs with acute kidney injury (AKI) potential, and pDDIs with QTc prolongation potential. Methods: We extracted routinely collected retrospective data from electronic health records of intensive care units (ICUs) patients (≥18 years), admitted to ten hospitals in the Netherlands between January 2010 and September 2019. We used computerized triggers (e-triggers) to preselect patients with potential DDI-ADEs. Between September 2020 and October 2021, clinical experts conducted a retrospective manual patient chart review on a subset of preselected patients, and assessed causality, severity, preventability, and contribution to ICU length of stay of DDI-ADEs using internationally prevailing standards. Results: In total 85 422 patients with ≥1 pDDI were included. Of these patients, 32 820 (38.4%) have been exposed to one of the three pDDIs. In the exposed group, 1141 (3.5%) patients were preselected using e-triggers. Of 237 patients (21%) assessed, 155 (65.4%) experienced an actual DDI-ADE; 52.9% had severity level of serious or higher, 75.5% were preventable, and 19.3% contributed to a longer ICU length of stay. The positive predictive value was the highest for DDI-INR+ e-trigger (0.76), followed by DDI-AKI e-trigger (0.57). Conclusion: The highly preventable nature and severity of DDI-ADEs, calls for action to optimize ICU patient safety. Use of e-triggers proved to be a promising preselection strategy.</p

    Empirical comparison of cross-platform normalization methods for gene expression data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Simultaneous measurement of gene expression on a genomic scale can be accomplished using microarray technology or by sequencing based methods. Researchers who perform high throughput gene expression assays often deposit their data in public databases, but heterogeneity of measurement platforms leads to challenges for the combination and comparison of data sets. Researchers wishing to perform cross platform normalization face two major obstacles. First, a choice must be made about which method or methods to employ. Nine are currently available, and no rigorous comparison exists. Second, software for the selected method must be obtained and incorporated into a data analysis workflow.</p> <p>Results</p> <p>Using two publicly available cross-platform testing data sets, cross-platform normalization methods are compared based on inter-platform concordance and on the consistency of gene lists obtained with transformed data. Scatter and ROC-like plots are produced and new statistics based on those plots are introduced to measure the effectiveness of each method. Bootstrapping is employed to obtain distributions for those statistics. The consistency of platform effects across studies is explored theoretically and with respect to the testing data sets.</p> <p>Conclusions</p> <p>Our comparisons indicate that four methods, DWD, EB, GQ, and XPN, are generally effective, while the remaining methods do not adequately correct for platform effects. Of the four successful methods, XPN generally shows the highest inter-platform concordance when treatment groups are equally sized, while DWD is most robust to differently sized treatment groups and consistently shows the smallest loss in gene detection. We provide an R package, CONOR, capable of performing the nine cross-platform normalization methods considered. The package can be downloaded at <url>http://alborz.sdsu.edu/conor</url> and is available from CRAN.</p

    Can Survival Prediction Be Improved By Merging Gene Expression Data Sets?

    Get PDF
    BACKGROUND:High-throughput gene expression profiling technologies generating a wealth of data, are increasingly used for characterization of tumor biopsies for clinical trials. By applying machine learning algorithms to such clinically documented data sets, one hopes to improve tumor diagnosis, prognosis, as well as prediction of treatment response. However, the limited number of patients enrolled in a single trial study limits the power of machine learning approaches due to over-fitting. One could partially overcome this limitation by merging data from different studies. Nevertheless, such data sets differ from each other with regard to technical biases, patient selection criteria and follow-up treatment. It is therefore not clear at all whether the advantage of increased sample size outweighs the disadvantage of higher heterogeneity of merged data sets. Here, we present a systematic study to answer this question specifically for breast cancer data sets. We use survival prediction based on Cox regression as an assay to measure the added value of merged data sets. RESULTS:Using time-dependent Receiver Operating Characteristic-Area Under the Curve (ROC-AUC) and hazard ratio as performance measures, we see in overall no significant improvement or deterioration of survival prediction with merged data sets as compared to individual data sets. This apparently was due to the fact that a few genes with strong prognostic power were not available on all microarray platforms and thus were not retained in the merged data sets. Surprisingly, we found that the overall best performance was achieved with a single-gene predictor consisting of CYB5D1. CONCLUSIONS:Merging did not deteriorate performance on average despite (a) The diversity of microarray platforms used. (b) The heterogeneity of patients cohorts. (c) The heterogeneity of breast cancer disease. (d) Substantial variation of time to death or relapse. (e) The reduced number of genes in the merged data sets. Predictors derived from the merged data sets were more robust, consistent and reproducible across microarray platforms. Moreover, merging data sets from different studies helps to better understand the biases of individual studies and can lead to the identification of strong survival factors like CYB5D1 expression

    Integrated Assessment of Heavy Metal Contamination in Sediments from a Coastal Industrial Basin, NE China

    Get PDF
    The purpose of this study is to investigate the current status of metal pollution of the sediments from urban-stream, estuary and Jinzhou Bay of the coastal industrial city, NE China. Forty surface sediment samples from river, estuary and bay and one sediment core from Jinzhou bay were collected and analyzed for heavy metal concentrations of Cu, Zn, Pb, Cd, Ni and Mn. The data reveals that there was a remarkable change in the contents of heavy metals among the sampling sediments, and all the mean values of heavy metal concentration were higher than the national guideline values of marine sediment quality of China (GB 18668-2002). This is one of the most polluted of the world’s impacted coastal systems. Both the correlation analyses and geostatistical analyses showed that Cu, Zn, Pb and Cd have a very similar spatial pattern and come from the industrial activities, and the concentration of Mn mainly caused by natural factors. The estuary is the most polluted area with extremely high potential ecological risk; however the contamination decreased with distance seaward of the river estuary. This study clearly highlights the urgent need to make great efforts to control the industrial emission and the exceptionally severe heavy metal pollution in the coastal area, and the immediate measures should be carried out to minimize the rate of contamination, and extent of future pollution problems
    corecore