2 research outputs found
Bathymetric Photogrammetry to Update CHS Charts: Comparing Conventional 3D Manual and Automatic Approaches
The Canadian Hydrographic Service (CHS) supports safe navigation within Canadian waters through approximately 1000 navigational charts as well as hundreds of publications. One of the greatest challenges faced by the CHS is removing gaps in bathymetric survey data, particularly in the Canadian Arctic where only 6% of navigational water is surveyed to modern standards. Therefore, the CHS has initiated a research project to explore remote sensing methods to improve Canadian navigational charts. The major components of this project explore satellite derived bathymetry (SDB), coastline change detection and coastline extraction. This paper focuses on the potential of two stereo satellite techniques for deriving SDB: (i) automatic digital elevation model (DEM) extraction using a semi-global matching method, and (ii) 3D manual delineation of depth contours using visual stereoscopic interpretation. Analysis focused on quantitative assessment which compared estimated depths from both automatic and 3D manual photogrammetric approaches against available in situ survey depths. The results indicate that the 3D manual approach provides an accuracy of <2 m up to a depth of 15 m. Comparable results were obtained from the automatic approach to a depth of 12 m. For almost all investigated depth ranges for both techniques, uncertainties were found to be within the required vertical accuracies for the International Hydrographic Organization category zone of confidence (CATZOC) level C classification for hydrographic surveys. This indicates that both techniques can be used to derive navigational quality bathymetric information within the investigated study site. While encouraging, neither technique was found to offer a single solution for the complete estimation of depth within the study area. As a result of these findings, the CHS envisions a hybrid approach where stereo- and reflectance-based bathymetry estimation techniques are implemented to provide the greatest understanding of depth possible from satellite imagery. Overall, stereo photogrammetry techniques will likely allow for new potential for supporting the improvement of CHS charts in areas where modern surveys have not yet been obtained
Evaluation of C-Band SAR for Identification of Flooded Vegetation in Emergency Response Products
A synthetic aperture radar (SAR) data set of the Peace Athabasca Delta, Alberta, was used to evaluate approaches to flooded vegetation mapping. A primary objective was to identify how to add a flooded vegetation layer to the Emergency Geomatics Service (EGS) SAR-derived flood products. Field data were used to identify non-flooded and flooded vegetation. A combination of statistical analyses and box plot visual inspection was used to evaluate the magnitude-only images, the polarimetric and compact polarimetric parameters/decompositions, and the coherence products for mapping flooded vegetation. This paper provides some background on the use of SAR for flood mapping, describes the data and processing methods, and presents the results of this comparison. To some degree all polarizations and techniques were effective for mapping flooded vegetation due to the increased backscatter intensity and the phase shift from the double bounce scattering. In particular, all polarization combinations, the HH/HV ratio, Shannon entropy, and the m-chi double bounce produce good separation. The water/vegetation interface remains coherent when flooded, also allowing flooded vegetation to be identified with seasonal coherence. These results demonstrate that the use of multi-mode RADARSAT Constellation Mission data for providing a flooded vegetation layer to EGS flood maps is possible