11 research outputs found

    Generation of Long-Term Stable Squeezed Vacuum States Using Dither-Locking Technique

    No full text
    We report the generation of long-term stable squeezed vacuum states at 1064 nm using a degenerate optical parametric amplifier (DOPA) with a periodically poled KTiOPO4 crystal (PPKTP). The OPA is pumped by a 532 nm light produced by frequency doubling the fundamental light with a bow-tie enhancement second harmonic generator (SHG). When the DOPA and relative phases are locked using a dither-locking method, the squeezed vacuum states are stably measured over 2 h at 11 MHz. The highly compact and simple squeezed light source is suitable for applications in quantum optics experiments

    Distributed Partial Discharge Locating and Detecting Scheme Based on Optical Fiber Rayleigh Backscattering Light Interference

    No full text
    Optical fiber sensors are used for partial discharge detection in many applications due their advantage of strong anti-electromagnetic interference capability. Multi-point distributed partial discharge detection and location are important for electrical equipment. In this paper, a distributed partial discharge location and detection scheme based on optical fiber Rayleigh backscattering light interference is experimentally demonstrated. At the same time, the location and extraction algorithm is used to demodulate the partial discharge signal; furthermore, the high-pass filter is used to reduce the system low-frequency noise and environment noise. It is clear that the proposed system can detect a partial discharge signal generated by metal needle sensitivity, and the detectable frequency range is 0–2.5 kHz. We carried out 10 locating tests for two sensing units, the experimental results show that the maximum location error is 1.0 m, and the maximum standard deviation is 0.3795. At same time, the signal-to-noise ratio (SNR) of sensing unit 1 and sensing unit 2 are greatly improved after demodulation, which are 39.7 and 38.8, respectively. This provides a new method for a multipoint-distributed optical fiber sensor used for detecting and locating a long-distance electrical equipment partial discharge signal

    Distributed Partial Discharge Locating and Detecting Scheme Based on Optical Fiber Rayleigh Backscattering Light Interference

    No full text
    Optical fiber sensors are used for partial discharge detection in many applications due their advantage of strong anti-electromagnetic interference capability. Multi-point distributed partial discharge detection and location are important for electrical equipment. In this paper, a distributed partial discharge location and detection scheme based on optical fiber Rayleigh backscattering light interference is experimentally demonstrated. At the same time, the location and extraction algorithm is used to demodulate the partial discharge signal; furthermore, the high-pass filter is used to reduce the system low-frequency noise and environment noise. It is clear that the proposed system can detect a partial discharge signal generated by metal needle sensitivity, and the detectable frequency range is 0–2.5 kHz. We carried out 10 locating tests for two sensing units, the experimental results show that the maximum location error is 1.0 m, and the maximum standard deviation is 0.3795. At same time, the signal-to-noise ratio (SNR) of sensing unit 1 and sensing unit 2 are greatly improved after demodulation, which are 39.7 and 38.8, respectively. This provides a new method for a multipoint-distributed optical fiber sensor used for detecting and locating a long-distance electrical equipment partial discharge signal
    corecore