1,234 research outputs found
Strong Coupling between Antiferromagnetic and Superconducting Order Parameters in CeRhIn Studied by In-NQR Spectroscopy
We report on a novel pressure ()-induced evolution of magnetism and
superconductivity (SC) in a helical magnet CeRhIn with an incommensurate
wave vector through the In nuclear quadrupole
resonance (NQR) measurements under . Systematic measurements of the
In-NQR spectrum reveal that the commensurate antiferromagnetism (AFM)
with is realized above 1.7 GPa. An
important finding is that the size of SC gap and increase as the
magnitude of the AFM moment decreases in the region, where SC uniformly
coexists with the commensurate AFM. This result provides evidence of strong
coupling between the commensurate AFM order parameter (OP) and SC OP.Comment: 5 pages, 5 figure
Nuclear Magnetic Relaxation Rate in Iron-Pnictide Superconductors
Nuclear magnetic relaxation rate 1/T_1 in iron-pnictide superconductors is
calculated using the gap function obtained in a microscopic calculation. Based
on the obtained results, we discuss the issues such as the rapid decrease of
1/T_1 just below the transition temperature and the difference between nodeless
and nodal s-wave gap functions. We also investigate the effect of Coulomb
interaction on 1/T_1 in the random phase approximation and show its importance
in interpreting the experimental results.Comment: Proceedings of 9th International Conference on Materials and
Mechanisms of Superconductivity. To be published in Physica
High-Tc Nodeless s_\pm-wave Superconductivity in (Y,La)FeAsO_{1-y} with Tc=50 K: 75As-NMR Study
We report 75As-NMR study on the Fe-pnictide high-Tc superconductor
Y0.95La0.05FeAsO_{1-y} (Y0.95La0.051111) with Tc=50 K that includes no magnetic
rare-earth elements. The measurement of the nuclear-spin lattice-relaxation
rate 75(1/T1) has revealed that the nodeless bulk superconductivity takes place
at Tc=50 K while antiferromagnetic spin fluctuations (AFSFs) develop moderately
in the normal state. These features are consistently described by the multiple
fully-gapped s_\pm-wave model based on the Fermi-surface (FS) nesting.
Incorporating the theory based on band calculations, we propose that the reason
that Tc=50 K in Y0.95La0.051111 is larger than Tc=28 K in La1111 is that the FS
multiplicity is maximized, and hence the FS nesting condition is better than
that in La1111.Comment: 4 pages, 3 figures, accepted for publication in Phys Rev. Let
Novel phase diagram for antiferromagnetism and superconductivity in pressure-induced heavy-fermion superconductor CeRhIn probed by In-NQR
We present a novel phase diagram for the antiferromagnetism and
superconductivity in CeRhIn probed by In-NQR studies under pressure
(). The quasi-2D character of antiferromagnetic spin fluctuations in the
paramagnetic state at = 0 evolves into a 3D character because of the
suppression of antiferromagnetic order for 1.36 GPa (QCP:
antiferromagnetic quantum critical point). Nuclear-spin-lattice-relaxation rate
measurements revealed that the superconducting order occurs in the
range 1.36 -- 1.84 GPa, with maximum 0.9 K around
1.36 GPa.Comment: 5 pages, 5 figures, submitted to PR
Spin Susceptibility of Noncentrosymmetric Heavy-fermion Superconductor CeIrSi3 under Pressure: 29Si-Knight Shift Study on Single Crystal
We report 29Si-NMR study on a single crystal of the heavy-fermion
superconductor CeIrSi3 without an inversion symmetry along the c-axis. The
29Si-Knight shift measurements under pressure have revealed that the spin
susceptibility for the ab-plane decreases slightly below Tc, whereas along the
c-axis it does not change at all. The result can be accounted for by the spin
susceptibility in the superconducting state being dominated by the strong
antisymmetric (Rashba-type) spin-orbit interaction that originates from the
absence of an inversion center along the c-axis and it being much larger than
superconducting condensation energy. This is the first observation which
exhibits an anisotropy of the spin susceptibility below Tc in the
noncentrosymmetric superconductor dominated by strong Rashba-type spin-orbit
interaction.Comment: 4 pages, 4 figures, Accepted for publication in Phys. Rev. Let
Enhancement of Superconducting Transition Temperature due to the strong Antiferromagnetic Spin Fluctuations in Non-centrosymmetric Heavy-fermion Superconductor CeIrSi3 :A 29Si-NMR Study under Pressure
We report a 29Si-NMR study on the pressure-induced superconductivity (SC) in
an antiferromagnetic (AFM) heavy-fermion compound CeIrSi3 without inversion
symmetry. In the SC state at P=2.7-2.8 GPa, the temperature dependence of the
nuclear-spin lattice relaxation rate 1/T_1 below Tc exhibits a T^3 behavior
without any coherence peak just below Tc, revealing the presence of line nodes
in the SC gap. In the normal state, 1/T_1 follows a \sqrt{T}-like behavior,
suggesting that the SC emerges under the non-Fermi liquid state dominated by
AFM spin fluctuations enhanced around quantum critical point (QCP). The reason
why the maximum Tc in CeIrSi3 is relatively high among the Ce-based
heavy-fermion superconductors may be the existence of the strong AFM spin
fluctuations. We discuss the comparison with the other Ce-based heavy-fermion
superconductors.Comment: 4 pages, 5 figures, To be published in Phys. Rev. Let
Possibility of valence-fluctuation mediated superconductivity in Cd-doped CeIrIn probed by In-NQR
We report on a pressure-induced evolution of exotic superconductivity and
spin correlations in CeIr(InCd) by means of
In-Nuclear-Quadrupole-Resonance (NQR) studies. Measurements of an NQR spectrum
and nuclear-spin-lattice-relaxation rate have revealed that
antiferromagnetism induced by the Cd-doping emerges locally around Cd dopants,
but superconductivity is suddenly induced at = 0.7 and 0.9 K at 2.34 and
2.75 GPa, respectively. The unique superconducting characteristics with a large
fraction of the residual density of state at the Fermi level that increases
with differ from those for anisotropic superconductivity mediated by
antiferromagnetic correlations. By incorporating the pressure dependence of the
NQR frequency pointing to the valence change of Ce, we suggest that
unconventional superconductivity in the CeIr(InCd) system may
be mediated by valence fluctuations.Comment: Accepted for publication in Physical Review Letter
- …