12 research outputs found
Effects of cannabidiol on contractions and calcium signaling in rat ventricular myocytes
© 2015 Elsevier Ltd. Cannabidiol (CBD), a major nonpsychotropic cannabinoid found in Cannabis plant, has been shown to influence cardiovascular functions under various physiological and pathological conditions. In the present study, the effects of CBD on contractility and electrophysiological properties of rat ventricular myocytes were investigated. Video edge detection was used to measure myocyte shortening. Intracellular Ca2+ was measured in cells loaded with the Ca2+ sensitive fluorescent indicator fura-2 AM. Whole-cell patch clamp was used to measure action potential and Ca2+ currents. Radioligand binding was employed to study pharmacological characteristics of CBD binding. CBD (1μM) caused a significant decrease in the amplitudes of electrically evoked myocyte shortening and Ca2+ transients. However, the amplitudes of caffeine-evoked Ca2+ transients and the rate of recovery of electrically evoked Ca2+ transients following caffeine application were not altered. CBD (1μM) significantly decreased the duration of APs. Further studies on L-type Ca2+ channels indicated that CBD inhibits these channels with IC50 of 0.1μM in a voltage-independent manner. Radioligand studies indicated that the specific binding of [3H]Isradipine, was not altered significantly by CBD. The results suggest that CBD depresses myocyte contractility by suppressing L-type Ca2+ channels at a site different than dihydropyridine binding site and inhibits excitation-contraction coupling in cardiomyocytes
Effects of Endogenous Cannabinoid Anandamide on Voltage-Dependent Sodium and Calcium Channels in Rat Ventricular Myocytes
BACKGROUND AND PURPOSE: The endocannabinoid anandamide (N-arachidonoyl ethanolamide; AEA) exerts negative inotropic and antiarrhythmic effects in ventricular myocytes.
EXPERIMENTAL APPROACH: Whole-cell patch-clamp technique and radioligand-binding methods were used to analyse the effects of anandamide in rat ventricular myocytes.
KEY RESULTS: In the presence of 1-10 μM AEA, suppression of both Na(+) and L-type Ca(2+) channels was observed. Inhibition of Na(+) channels was voltage and Pertussis toxin (PTX) - independent. Radioligand-binding studies indicated that specific binding of [(3) H] batrachotoxin (BTX) to ventricular muscle membranes was also inhibited significantly by 10 μM metAEA, a non-metabolized AEA analogue, with a marked decrease in Bmax values but no change in Kd . Further studies on L-type Ca(2+) channels indicated that AEA potently inhibited these channels (IC50 0.1 μM) in a voltage- and PTX-independent manner. AEA inhibited maximal amplitudes without affecting the kinetics of Ba(2+) currents. MetAEA also inhibited Na(+) and L-type Ca(2+) currents. Radioligand studies indicated that specific binding of [(3) H]isradipine, was inhibited significantly by metAEA. (10 μM), changing Bmax but not Kd .
CONCLUSION AND IMPLICATIONS: Results indicate that AEA inhibited the function of voltage-dependent Na(+) and L-type Ca(2+) channels in rat ventricular myocytes, independent of CB1 and CB2 receptor activation
Menthol Binding and Inhibition of a7-Nicotinic Acetylcholine Receptors
Menthol is a common compound in pharmaceutical and commercial products and a popular additive to cigarettes. The molecular targets of menthol remain poorly defined. In this study we show an effect of menthol on the α7 subunit of the nicotinic acetylcholine (nACh) receptor function. Using a two-electrode voltage-clamp technique, menthol was found to reversibly inhibit α7-nACh receptors heterologously expressed in Xenopus oocytes. Inhibition by menthol was not dependent on the membrane potential and did not involve endogenous Ca2+-dependent Cl− channels, since menthol inhibition remained unchanged by intracellular injection of the Ca2+ chelator BAPTA and perfusion with Ca2+-free bathing solution containing Ba2+. Furthermore, increasing ACh concentrations did not reverse menthol inhibition and the specific binding of [125I] α-bungarotoxin was not attenuated by menthol. Studies of α7- nACh receptors endogenously expressed in neural cells demonstrate that menthol attenuates α7 mediated Ca2+ transients in the cell body and neurite. In conclusion, our results suggest that menthol inhibits α7-nACh receptors in a noncompetitive manner
Temperature-dependent contractility of rat tunica dartos muscle: Contribution of cold, menthol-sensitive TRPM8
Tunica dartos smooth muscle (TDSM) lies beneath the scrotal skin, and its contraction leads to scrotum wrinkling upon cooling. However, neither the nature of TDSM cold-sensitivity nor the underlying molecular sensors are well understood. Here we have investigated the role of cold/menthol-sensitive TRPM8 channel in TDSM temperature-dependent contractility. The contraction of isolated male rat TDSM strips was studied by tensiometry. TRPM8 expression was assayed by RT-PCR and fluorescence immunochemistry. Isolated TDSM strips responded to cooling from 33 °C to 20 °C by enhancement of basal tension, and increase of the amplitude and duration of electric field stimulated (EFS) contractions. The effects of cold on basal tension, but not on EFS-contractions, could be 80% inhibited by TRPM8 blockers, capsazepine and BCTC [N-(4‑tert-butylphenyl)-4-(3-chloropyridin-2-yl)piperazine-1-carboxamide], and could be partially mimicked by menthol. RT-PCR and immunolabeling showed TRPM8 mRNA and protein expression in TDSM cells with protein labelling being predominantly localized to intracellular compartments. Chemical castration of male rats consequent to the treatment with androgen receptor blocker, flutamide, led to the abrogation of cold effects on TDSM basal tension, but not on EFS-contractions, and to the disappearance of TRPM8 protein expression. We conclude that TRPM8 is involved in the maintenance of basal cold-induced TDSM tonus, but not in sympathetic nerve-mediated contractility, by acting as endoplasmic reticulum Ca2+ release channel whose expression in TDSM cells requires the presence of a functional androgen receptor. Thus, TRPM8 plays a crucial role in scrotal thermoregulation which is important for maintaining normal spermatogenesis and male fertility
Menthol Inhibits 5-Ht3 Receptor-Mediated Currents
The effects of alcohol monoterpene menthol, a major active ingredient of the peppermint plant, were tested on the function of human 5-hydroxytryptamine type 3 (5-HT3) receptors expressed in Xenopus laevis oocytes. 5-HT (1 mu M)-evoked currents recorded by two-electrode voltage-clamp technique were reversibly inhibited by menthol in a concentration-dependent (IC50 = 163 mu M) manner. The effects of menthol developed gradually, reaching a steady-state level within 10-15 minutes and did not involve G-proteins, since GTP gamma S activity remained unaltered and the effect of menthol was not sensitive to pertussis toxin pretreatment. The actions of menthol were not stereoselective as (-), (+), and racemic menthol inhibited 5-HT3 receptor-mediated currents to the same extent. Menthol inhibition was not altered by intracellular 1,2-bis(o-aminophenoxy) ethane-N,N,N\u27,N\u27-tetraacetic acid injections and transmembrane potential changes. The maximum inhibition observed for menthol was not reversed by increasing concentrations of 5-HT. Furthermore, specific binding of the 5-HT3 antagonist [H-3]GR65630 was not altered in the presence of menthol (up to 1 mu M), indicating that menthol acts as a noncompetitive antagonist of the 5-HT3 receptor. Finally, 5-HT3 receptor-mediated currents in acutely dissociated nodose ganglion neurons were also inhibited by menthol (100 mu M). These data demonstrate that menthol, at pharmacologically relevant concentrations, is an allosteric inhibitor of 5-HT3 receptors